Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant Cell ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37795677

ABSTRACT

Plant inflorescence architecture is determined by inflorescence meristem (IM) activity and controlled by genetic mechanisms associated with environmental factors. In Arabidopsis (Arabidopsis thaliana), TERMINAL FLOWER1 (TFL1) is expressed in the IM and is required to maintain indeterminate growth, whereas LEAFY (LFY) is expressed in the floral meristems (FMs) formed at the periphery of the IM and is required to activate determinate floral development. Here, we address how Arabidopsis indeterminate inflorescence growth is determined. We show that the 26S proteasome subunit REGULATORY PARTICLE AAA-ATPASE 2a (RPT2a) is required to maintain the indeterminate inflorescence architecture in Arabidopsis. rpt2a mutants display reduced TFL1 expression levels and ectopic LFY expression in the IM and develop a determinate zigzag-shaped inflorescence. We further found that RPT2a promotes DNA METHYLTRANSFERASE1 degradation, leading to DNA hypomethylation upstream of TFL1 and high TFL1 expression levels in the wild-type IM. Overall, our work reveals that proteolytic input into the epigenetic regulation of TFL1 expression directs inflorescence architecture in Arabidopsis, adding an additional layer to stem cell regulation.

2.
Sci China Life Sci ; 66(4): 819-834, 2023 04.
Article in English | MEDLINE | ID: mdl-36417050

ABSTRACT

Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat (Triticum aestivum. L., BBAADD) is hypothesized to increase its adaptability and/or plasticity. However, the molecular basis of expression divergence remains unclear. Squamosa promoter-binding protein-like (SPL) transcription factors are critical for a wide array of biological processes. In this study, we constructed expression regulatory networks by combining DAP-seq for 40 SPLs, ATAC-seq, and RNA-seq. Our findings indicate that a group of low-affinity SPL binding regions (SBRs) were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif. The SBRs including the low-affinity ones are evolutionarily conserved, enriched GWAS signals related to important agricultural traits. However, those SBRs are highly diversified among the cis-regulatory regions (CREs) of syntenic genes, with less than 8% SBRs coexisting in triad genes, suggesting that CRE variations are critical for subgenome differentiations. Knocking out of TaSPL7A/B/D and TaSPL15A/B/D subfamily further proved that both high- and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes. Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.


Subject(s)
Genome, Plant , Triticum , Triticum/genetics , Phenotype , Binding Sites , Gene Expression Regulation, Plant
3.
Front Pediatr ; 11: 1099841, 2023.
Article in English | MEDLINE | ID: mdl-36861077

ABSTRACT

Hemifacial microsomia (HFM) is a common congenital malformation of the craniofacial region, including mandibular hypoplasia, microtia, facial palsy and soft tissue deficiencies. However, it remains unclear which specific genes are involved in the pathogenesis of HFM. By identifying differentially expressed genes (DEGs) in deficient facial adipose tissue from HFM patients, we hope to provide a new insight into disease mechanisms from the transcriptome perspective. RNA sequencing (RNA-Seq) was performed with 10 facial adipose tissues from patients of HFM and healthy controls. Differentially expressed genes in HFM were validated by quantitative real-time PCR (qPCR). Functional annotations of the DEGs were analyzed with DESeq2 R package (1.20.0). A total of 1,244 genes were identified as DEGs between HFM patients and matched controls. Bioinformatic analysis predicted that the increased expression of HOXB2 and HAND2 were associated with facial deformity of HFM. Knockdown and overexpression of HOXB2 were achieved with lentiviral vectors. Cell proliferation, migration, and invasion assay was performed with adipose-derived stem cells (ADSC) to confirm the phenotype of HOXB2. We also found that PI3K-Akt signaling pathway and human papillomavirus infection were activated in HFM. In conclusion, we discovered potential genes, pathways and networks in HFM facial adipose tissue, which contributes to a better understanding of the pathogenesis of HFM.

4.
Mol Plant ; 15(1): 125-137, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34896639

ABSTRACT

Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.


Subject(s)
Gravitropism/genetics , Oryza/anatomy & histology , Oryza/growth & development , Oryza/genetics , Plant Shoots/growth & development , Plant Shoots/genetics , Crops, Agricultural/anatomy & histology , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Plant , Genes, Plant
5.
Mol Plant ; 15(4): 740-754, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35381198

ABSTRACT

N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice.


Subject(s)
Oryza , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , N-Terminal Acetyltransferase A/metabolism , Oryza/genetics , Oryza/metabolism , Plant Development , Stress, Physiological
6.
Mol Plant ; 14(6): 997-1011, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33741527

ABSTRACT

Grain number per panicle (GNP) is an important agronomic trait that contributes to rice grain yield. Despite its importance in rice breeding, the molecular mechanism underlying GNP regulation remains largely unknown. In this study, we identified a previously unrecognized regulatory gene that controls GNP in rice, Oryza sativa REPRODUCTIVE MERISTEM 20 (OsREM20), which encodes a B3 domain transcription factor. Through genetic analysis and transgenic validation we found that genetic variation in the CArG box-containing inverted repeat (IR) sequence of the OsREM20 promoter alters its expression level and contributes to GNP variation among rice varieties. Furthermore, we revealed that the IR sequence regulates OsREM20 expression by affecting the direct binding of OsMADS34 to the CArG box within the IR sequence. Interestingly, the divergent pOsREM20IR and pOsREM20ΔIR alleles were found to originate from different Oryza rufipogon accessions, and were independently inherited into the japonica and indica subspecies, respectively, during domestication. Importantly, we demonstrated that IR sequence variations in the OsREM20 promoter can be utilized for germplasm improvement through either genome editing or traditional breeding. Taken together, our study characterizes novel genetic variations responsible for GNP diversity in rice, reveals the underlying molecular mechanism in the regulation of agronomically important gene expression, and provides a promising strategy for improving rice production by manipulating the cis-regulatory element-containing IR sequence.


Subject(s)
Edible Grain/genetics , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Quantitative Trait Loci , Alleles , Domestication , Edible Grain/growth & development , Gene Expression Regulation, Plant , Genes, Plant/genetics , Inverted Repeat Sequences , Plant Breeding/methods , Plant Proteins/genetics , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL