Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Med Virol ; 95(1): e28009, 2023 01.
Article in English | MEDLINE | ID: mdl-35854676

ABSTRACT

Human papillomavirus (HPV) integration and high expression of HPV oncogenes (E6 and E7) are important mechanisms for HPV carcinogenesis in cervical cancer. However, the relationship between HPV integration and HPV E6 spliced transcripts, as well as the underlying mechanisms of HPV integration in carcinogenesis after HPV E6 splicing remains unclear. We analyzed HPV-coiled-coil domain containing 106 (CCDC106) integration samples to characterize the roles of HPV integration, E6 spliceosome I (E6*I), and high CCDC106 expression in cervical carcinogenesis. We found that E6 was alternatively spliced into the E6*I transcript in HPV-CCDC016 integration samples with low p53 expression, in contrast to the role of E6*I in preventing p53 degradation in cervical cancer cells. In addition, CCDC106 was highly expressed after HPV-CCDC106 integration, and interacted with p53, resulting in p53 degradation and cervical cancer cell progression in vitro and in vivo. Importantly, when E6*I was highly expressed in cervical cancer cells, overexpression of CCDC106 independently degraded p53 and promoted cervical cancer cell progression. In this study, we explored the underlying mechanisms of HPV-CCDC106 integration in HPV carcinogenesis after HPV E6 splicing, which should provide insight into host genome dysregulation in cervical carcinogenesis.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Oncogene Proteins, Viral/genetics , Human Papillomavirus Viruses , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Carcinogenesis , Carrier Proteins
2.
Ecotoxicol Environ Saf ; 249: 114420, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36521270

ABSTRACT

The accumulation of arsenic (As) in Chinese cabbage (Brassica rapa ssp. pekinensis) has recently been a source of concern for a potential risk to human health. It is unknown whether natural variations of As accumulation in different genotypes of Chinese cabbage are related to rhizobacterial characteristics. Experiments were conducted to investigate the mechanisms of rhizobacteria involving in As fates in a soil-Chinese cabbage system using various genotypes using high-throughput sequencing and quantitative PCR. There were significant differences in As accumulation in cabbage leaves between 32 genotypes, and genotypes of low-As-accumulation (LSA) and high-As-accumulation (HSA) were identified. The As concentrations in the shoots of LSA were 23.25 %, 24.19 %, 15.05 %, and 70.69 % lower than those of HSA in seedling stage (SS), rosette stage (RS), heading stage (HS), and mature stage (MS), respectively. Meanwhile, the relative abundances of phyla Patescibacteria (in RS), Acidobacteria and Rokubacteria (in HS) in the rhizosphere of LSA were 60.18 %, 28.19 %, and 45.38 % less than those of HSA, respectively. Additionally, both shoot-As and As translocation factor had significantly positive or negative correlations with the relative abundances of Rokubacteria or Actinobacteria. In LSA rhizosphere, the relative abundances of genera Flavobacterium (in SS), Ellin6055 and Sphingomonas (in HS) were 128.12 %, 83.69 % and 79.50 % higher than those of HSA, respectively. This demonstrated that rhizobacteria contribute to the accumulation and translocation of As in HSA and LSA. Furthermore, the gene copies of aioA and arsM in LSA rhizosphere were 25.54 % and 16.13 % higher than those of HSA, respectively, whereas the gene copies of arsC in LSA rhizosphere were 26.36 % less than those of HSA in MS, indicating that rhizobacteria are involved in As biotransformation in the soil. These results provide a comprehensive understanding of the relationship between characteristics of rhizobacterial communities and As variations in Chinese cabbage genotypes.


Subject(s)
Arsenic , Brassica , Humans , Arsenic/metabolism , Soil , Rhizosphere , Biological Availability , Brassica/genetics , Brassica/metabolism , Bacteria/genetics , Seedlings/genetics
3.
Int J Cancer ; 150(2): 243-252, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34498732

ABSTRACT

Gastric atrophy caused by Helicobacter pylori infection was suggested to influence the risk of adenocarcinoma of the esophagogastric junction (AEGJ), however, the evidence remains limited. We aimed to examine the associations of H. pylori infection and gastric atrophy (defined using serum pepsinogen [PG] I to PGII ratio) with AEGJ risk, based on a population-based case-control study in Taixing, China (2010-2014), with 349 histopathologically confirmed AEGJ cases and 1859 controls. We explored the potential effect modification by H. pylori serostatus and sex on the association of serum PGs with AEGJ risk. We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs). H. pylori seropositivity was associated with an elevated AEGJ risk (OR = 1.95, 95% CI: 1.47-2.63). Neither CagA-positive nor VacA-positive strains dramatically changed this association. Gastric atrophy (PGI/PGII ratio ≤4) was positively associated with AEGJ risk (OR = 2.36, 95% CI: 1.72-3.22). The fully adjusted ORs for AEGJ progressively increased with the increasing levels of PGII (P-trend <.001). H. pylori showed nonsignificant effect modification (P-interaction = .385) on the association of gastric atrophy with AEGJ. In conclusion, H. pylori and gastric atrophy were positively associated with AEGJ risk. These results may contribute evidence to the ongoing research on gastric atrophy-related cancers and guide the prevention and control of AEGJ.


Subject(s)
Adenocarcinoma/epidemiology , Esophageal Neoplasms/epidemiology , Esophagogastric Junction/pathology , Gastritis, Atrophic/epidemiology , Helicobacter Infections/complications , Helicobacter pylori/isolation & purification , Adenocarcinoma/microbiology , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Case-Control Studies , China/epidemiology , Esophageal Neoplasms/microbiology , Esophageal Neoplasms/pathology , Esophagogastric Junction/microbiology , Female , Follow-Up Studies , Gastritis, Atrophic/microbiology , Gastritis, Atrophic/pathology , Helicobacter Infections/microbiology , Humans , Male , Middle Aged , Prognosis
4.
Pharmacol Res ; 180: 106227, 2022 06.
Article in English | MEDLINE | ID: mdl-35452800

ABSTRACT

Alzheimer's disease (AD) has become a major public health problem that affects the elderly population. Therapeutic compounds with curative effects are not available due to the complex pathogenesis of AD. Daphnetin, a natural coumarin derivative and inhibitor of various kinases, has anti-inflammatory and antioxidant activities. In this study, we found that daphnetin improved spatial learning and memory in an amyloid precursor protein (APP)/presenilin 1 (PS1) double-transgenic mouse model of AD. Daphnetin markedly decreased the levels of amyloid-ß peptide 1-40 (Aß40) and 1-42 (Aß42) in the cerebral cortex, downregulated the expressions of enzymes involved in APP processing, e.g., beta-site APP-cleaving enzyme (BACE), nicastrin and presenilin enhancer protein 2 (PEN2). We further found the reduced serum levels of inflammatory factors, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and chemokine (C-C motif) ligand 3 (CCL3), while daphnetin increased total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) levels in the serum. Interestingly, daphnetin markedly decreased the expression of glial fibrillary acidic protein (GFAP) and the upstream regulatory molecule- phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in APP/PS1 mice, and mainly inhibited the phosphorylation of STAT3 at Ser727 to decrease GFAP expression evidenced in a LPS-activated glial cell model. These results suggest that daphnetin ameliorates cognitive deficits and that Aß deposition in APP/PS1 mice is mainly correlated with astrocyte activation and APP processing.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-1/therapeutic use , STAT3 Transcription Factor/metabolism , Umbelliferones
5.
Cancer Cell Int ; 20: 229, 2020.
Article in English | MEDLINE | ID: mdl-32536817

ABSTRACT

BACKGROUND: We aimed to identify differentially expressed pseudogenes and explore their potential functions in four types of common gynecological malignancies (e.g., cervical squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma, and uterine carcinosarcoma) using bioinformatics technology. MATERIALS AND METHODS: We identified up-regulated and down-regulated pseudogenes and built a pseudogene-miRNA-mRNA regulatory network through public datasets to explore their potential functions in carcinogenesis and cancer prognosis. RESULTS: Among the 63 up-regulated pseudogenes identified, LDHAP5 demonstrated the greatest potential as a candidate pseudogene due to its significant association with poor overall survival in ovarian serous cystadenocarcinoma. KEGG pathway analysis revealed that LDHAP5 showed significant enrichment in MicroRNAs in cancer, Pathway in cancer and PI3K-AKT signaling pathway. Further analysis revealed that EGFR was the potential target mRNA of LDHAP5, which may play an important role in ovarian serous cystadenocarcinoma. CONCLUSIONS: LDHAP5 was associated with the occurrence and prognosis of ovarian serous cystadenocarcinoma, and thus shows potential as a novel therapeutic target against such cancer.

6.
Phys Rev Lett ; 125(5): 055301, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794831

ABSTRACT

For pseudospin-half bosons with interspin attraction and intraspin repulsion, the normal phase and Bose condensed phase can coexist at finite temperature. The homogeneous system is unstable against the spinodal decomposition within a medium density interval, and, consequently, a normal-superfluid phase separation takes place. The isothermal equation of state shows a characteristic plateau in the P-V (pressure-volume) diagram, which is reminiscent of a classical gas-liquid transition, although, unlike the latter, the coexistence lines never terminate at a critical point as temperature increases. In a harmonic trap, the phase separation can be revealed by the density profile of the atomic cloud, which exhibits a sudden jump across the phase boundary.

7.
Gynecol Oncol ; 155(3): 436-443, 2019 12.
Article in English | MEDLINE | ID: mdl-31604662

ABSTRACT

OBJECTIVE: Human papillomavirus (HPV) 16/18 genotyping is an effective method for triage of high-risk (hr) HPV-positive women in primary hrHPV screening for cervical cancer. The present study aimed to evaluate whether co-infected with other hrHPV types will affect the risk of cervical carcinogenesis in HPV16/18 positive women. METHODS: A total of 313,704 women aged ≥30 years were screened in China. Among them, 4,933 HPV16/18-positive participants underwent colposcopy-directed biopsy. The HPV genotypes were identified using the Cobas HPV genotyping system. Multinomial logistic regression was used to model different HPV16/18 infection patterns. RESULTS: The overall prevalence rates of hrHPV and HPV16/18 were 7.85% (24,456/311,382) and 1.95% (6,086/311,382) respectively. Among HPV16/18 positive individuals, 33.24% (2,023/6,086) were co-infection with multiple types. Of the 4933 women who underwent colposcopy, their HPV16/18 infection patterns were as follows: 52.38% (2,584/4,933) HVP16 only, 23.54% (1,161/4,933) HPV16 + other hrHPVs, 14.98% (739/4,933) HPV18 only, 6.83% (337/4,933) HPV18 + other hrHPVs, 1.13% (56/4,933) HPV16 + 18, 1.13% (56/4,933) HPV16 + 18+other hrHPVs. After adjusting for cofactors, compared with single HPV16 infection, the risk of developing cervical intraepithelial neoplasia (CIN) grade 3 or greater (CIN3+) was significantly lower in HPV16 + other hrHPVs group (odds ratio [OR] = 0.637, 95% confidence interval [CI] = 0.493-0.822). CONCLUSION: HPV16/18 co-infection with other hrHPVs is a common phenomenon. Different HPV16/18 infection patterns may influence the risk of cervical carcinogenesis. HPV16 co-infected with other hrHPVs appears to have a lower associated risk of CIN3+ in ≥30 years old women.


Subject(s)
Human papillomavirus 16/isolation & purification , Human papillomavirus 18/isolation & purification , Papillomavirus Infections/epidemiology , Uterine Cervical Dysplasia/epidemiology , Uterine Cervical Neoplasms/epidemiology , Adult , Carcinogenesis , China/epidemiology , Coinfection/epidemiology , Female , Genotype , Human papillomavirus 16/genetics , Human papillomavirus 18/genetics , Humans , Middle Aged , Papillomavirus Infections/virology , Prevalence , Uterine Cervical Neoplasms/virology , Uterine Cervical Dysplasia/virology
8.
Acta Pharmacol Sin ; 39(8): 1317-1325, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29417945

ABSTRACT

Alternatively activated macrophages (AAMs) are not only associated with asthma but also lead to asthmatic airway inflammation and remodeling. Inhibition of AAMs is an alternative therapeutic strategy for treating asthma. In this study we investigated whether emodin (1,3,8-trihydroxy-6-methylanthraquinone), isolated from the rhizome of Rheum palmatum, alleviated asthmatic airway inflammation and reduced AAM polarization in a murine asthma model. Mice were sensitized with a triple allergen mix containing dust mite, ragweed and aspergillus (DRA). In mice with DRA-induced asthma, asthmatic inflammation was significantly enhanced. Intraperitoneal injection of emodin (20 mg·kg-1·d-1, ip) 1 h prior to DRA challenge on days 12-14 significantly decreased pulmonary eosinophil and lymphocyte infiltration, mucus secretion and serum IgE production, as well as IL-4 and IL-5 production in bronchoalveolar lavage fluid. In response to emodin treatment, activated markers of AAM Ym-1, Fizz-1 and arginase-1 in the lung tissues were remarkably decreased. In mouse bone marrow-derived macrophages (BMDMs) in vitro, emodin (2-50 µmol/L) dose-dependently inhibited IL-4-induced AAM polarization and STAT6 phosphorylation. Collectively, our results suggest that emodin effectively ameliorates asthmatic airway inflammation and AAM polarization, and it may therefore become a potential agent for the treatment of asthma.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Emodin/therapeutic use , Inflammation/drug therapy , Macrophage Activation/drug effects , Animals , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Immunoglobulin E/metabolism , Inflammation/pathology , Interleukin-4/metabolism , Interleukin-5/metabolism , Lung/pathology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Pulmonary Eosinophilia/drug therapy , Pulmonary Eosinophilia/pathology
9.
Brain Behav ; 14(8): e3615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39135276

ABSTRACT

BACKGROUND: Temporal lobe epilepsy (TLE), a prevalent neurological disorder, is associated with hippocampal oxidative stress and inflammation. A recent study reveals that the long noncoding RNA ILF3 divergent transcript (ILF3-AS1) level is elevated in the hippocampus of TLE patients; however, the functional roles of ILF3-AS1 in TLE and underlying mechanisms deserve further investigation. Hence, this study aimed to elucidate whether ILF3-AS1 is involved in the pathogenesis of TLE by regulating oxidative stress and inflammation and to explore its underlying mechanism in vitro. METHODS: Human hippocampal neurons were subjected to a magnesium-free (Mg2+-free) solution to establish an in vitro model of TLE. The potential binding sites between ILF3-AS1 and miRNA were predicted by TargetScan/Starbase and confirmed by dual luciferase reporter assay. Cell viability and damage were assessed by cell counting kit-8 and lactate dehydrogenase assay kits, respectively. Levels of reactive oxygen species, malondialdehyde, and superoxide dismutase were determined by commercial kits. Levels of Interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-alpha were quantified by enzyme-linked immunosorbent assay. The expressions of gene and protein were determined by quantitative real-time polymerase chain reaction and Western blot analysis. RESULTS: In Mg2+-free-treated hippocampal neurons, both ILF3-AS1 and HMGB1 were highly up-regulated, whereas miR-504-3p was down-regulated. ILF3-AS1 knockdown ameliorated Mg2+-free-induced cellular damage, oxidative stress, and inflammatory response. Bioinformatics analysis revealed that miR-504-3p was a target of ILF3-AS1 and was negatively regulated by ILF3-AS1. MiR-504-3p inhibitor blocked the protection of ILF3-AS1 knockdown against Mg2+-free-induced neuronal injury. Further analysis presented that ILF3-AS1 regulated HMGB1 expression by sponging miR-504-3p. Moreover, HMGB1 overexpression reversed the protective functions of ILF3-AS1 knockdown. CONCLUSION: Our findings indicate that ILF3-AS1 contributes to Mg2+-free-induced hippocampal neuron injuries, oxidative stress, and inflammation by targeting the miR-504-3p/HMGB1 axis. These results provide a novel mechanistic understanding of ILF3-AS1 in TLE and suggest potential therapeutic targets for the treatment of epilepsy.


Subject(s)
Epilepsy, Temporal Lobe , HMGB1 Protein , Hippocampus , Inflammation , MicroRNAs , Oxidative Stress , RNA, Long Noncoding , Oxidative Stress/physiology , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Inflammation/genetics , Neurons/metabolism , Nuclear Factor 90 Proteins/metabolism , Nuclear Factor 90 Proteins/genetics
10.
Nat Prod Res ; : 1-6, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300706

ABSTRACT

Two new terpenoids were isolated from the branches and leaves of Rhododendron dauricum L., named as rhodayritions A (1) and B (2), together with five known compounds which were identified litseachromolaevane A (3), 11-αH-dihydrodehydrocostus lactone (4), (+)-9ß-hydroxyeudesma-4,11(13)-dien-12-al (5), macrostachyoside B (6) and aglaiabbreviatin E (7), respectively. The structures of isolated compounds were determined by UV, HR-ESI-MS, NMR analysis and X-Ray. Their neuroprotective activity was studied on serum deprivation-induced PC12 cells by the MTT method, compounds 1, 6, and 7 exhibited significant neuroprotective activity at 20 µΜ.

11.
Sci Total Environ ; 912: 169572, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142986

ABSTRACT

The release of chlorine during the pyrolysis of actual municipal plastic waste (MPW) was studied. Firstly, thermogravimetry-Fourier transform infrared (TG-FTIR) was analyzed to investigate the chlorine release behavior. Then, the effect of temperature on chlorine migrations was investigated by fast pyrolysis experiments in a fixed bed reactor. Results showed that chlorine released mainly between 241 and 353 °C in the form of HCl or chloroesters during MPW pyrolysis. After pyrolysis, chlorine was mainly distributed in the pyrolytic gas (74.34-82.89 %) and char (10.17-21.29 %). However, the release of chlorine was inhibited due to the melting behavior of MPW at <350 °C. Besides, the relative contents and types of organic chlorinated compounds in liquid products were both decreased with temperature. It was observed that polyethylene terephthalate (PET) was the greatest contributor to the formation of organic chlorinated compounds during MPW pyrolysis. Meanwhile, the pyrolysis of PET was significantly promoted by the HCl released from polyvinyl chloride (PVC). Subsequently, the pathways for the formation of organic chlorinated compounds through the co-pyrolysis of PVC and PET were proposed, including the initial degradation and subsequent chlorination of PET. These findings provided new insights into the release and regulation of chlorine-containing pollutants during actual MPW pyrolysis.

12.
Environ Pollut ; 342: 123053, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38042468

ABSTRACT

Cd and As accumulation in staple crops poses potential risks to food safety and human health. Rhizo-microbial communities are involved in their behaviors from soil to crops. However, the responses of rhizo-microbial communities to different Cd and As co-contaminated soils in wheat‒maize rotation are still unclear. This study explored whether wheat or maize could recruit distinct rhizo-microbial communities to adapt to long-term co-contaminated soils with low or high levels of Cd and As (LS or HS). It was apparent that the average wheat grain-Cd/As concentrations were 17.96-fold/4.81-fold in LS and 5.64-fold/7.70-fold in HS higher than those in maize grains, significantly depending on the mobility of Cd/As in soil-crop system, especially from soil to root and from straw to grain. Meanwhile, wheat or maize roots recruited specific bacteria and fungi in LS and HS, which were substantially associated with Cd/As bioavailability in rhizosphere. Wheat roots recruited specific bacterial genera norank_c__MB-A2-108 (Actinobacteria), norank_f__JG30-KF-CM45 (Chloroflexi), and norank_o__Rokubacteriales (Methylomirabilota) and fungal genera Metarhizium and Olpidium under HS, and their relative abundances were positively correlated with soil Cd/As bioavailability and were resistant to Cd and As co-contamination. However, bacterial genera Arthrobacter, Nocardioides, Devosia, Skermanella, and Pedobacter were sensitive to Cd and As co-contamination and were specifically enriched in wheat rhizospheres under LS. Meanwhile, the bacterial genus norank_c__KD4-96 (Chloroflexi) was resistant to Cd and As co-contamination under HS and was distinctly enriched in maize rhizosphere. Furthermore, the roots of wheat and maize recruited the bacterial genus Marmoricola in LS, which was sensitive to Cd and As co-contamination, and recruited specific fungal genus Fusicolla in HS, which was tolerant to Cd and As co-contamination. These results confirmed that HS and LS shifted the composition and structure of the rhizo-microbial communities in the wheat-maize rotation to promote crops survival in different long-term Cd and As co-contaminated soils.


Subject(s)
Chloroflexi , Microbiota , Soil Pollutants , Humans , Cadmium/toxicity , Cadmium/analysis , Triticum/microbiology , Zea mays/chemistry , Soil , Bacteria , Crops, Agricultural , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil Microbiology , Rhizosphere
13.
Huan Jing Ke Xue ; 45(3): 1812-1820, 2024 Mar 08.
Article in Zh | MEDLINE | ID: mdl-38471892

ABSTRACT

Heavy metal contamination of soil has become a hot issue of social concern due to its impact on the safety of agricultural products in recent years. Wheat is one of the most dominant staple food crops worldwide and has become a major source of toxic metals in human diets. Foliar application was considered to be a more efficient and economical method of heavy metal remediation. Field experiments were carried out in Cd-, As-, and Pb-contaminated farmland soils. The effects of foliar conditioners on the accumulation of Cd, As, and Pb in wheat grains were investigated after being sprayed with Zn (0.2% ZnSO4), Mg (0.4% MgSO4), and Mn (0.2% MnSO4) separately and in combination. Thus, the effective foliar conditioners were selected to block the accumulation of Cd, As, and Pb in wheat grains grown in combined heavy metal-contaminated farmland in north China. The results showed that, compared with that in the control, the Cd, As, and Pb contents in wheat grains of the Zn+Mg+Mn foliar treatment were significantly decreased by 18.96%, 23.87%, and 51.31%, respectively, and TFgrain/straw decreased by 14.62%, 27.73%, and 47.70%, respectively. Thus, spraying the compound foliar conditioner of Zn+Mg+Mn could effectively reduce heavy metal accumulation in wheat grains through inhibition translocation of those metals from stem leaves to grain. In addition, the results indicated that Cd and As were mainly distributed at the central endosperm (34.08%-37.08%), whereas Pb was primarily distributed at the pericarp and seed coat (27.78%) of the wheat grain. Compared with that in the control, spraying the compound foliar conditioner of Zn+Mg+Mn extremely decreased Cd and As accumulation in the aleurone layer of the wheat grain by 81.10% and 82.24%, respectively. Except for the pericarp, seed coat, and central endosperm layers, the Pb content in each grain layer was dramatically decreased by 42.85% to 91.15%. There was only a significant negative correlation between heavy metal content and Zn content in the aleurone layer (P2) of wheat flour. In summary, the accumulation of Cd, As, and Pb in wheat grains, especially in the aleurone layer, could be effectively reduced by foliar conditioner application at the jointing, booting, and early filling stages of wheat, separately. Furthermore, besides the foliar treatment, removing wheat bran to reduce Cd contamination in wheat grains is highly recommended to ensure the safe production of wheat.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Humans , Cadmium/analysis , Zinc , Lead , Farms , Flour , Soil Pollutants/analysis , Triticum , Soil , Edible Grain/chemistry
14.
Aging (Albany NY) ; 16(13): 11027-11061, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38975889

ABSTRACT

BACKGROUND: Adenocarcinoma of the esophagogastric junction (AEGJ) with a specific pathological profile and poor prognosis has limited therapeutic options. Previous studies have found that TILs exhibit distinct characteristics in different tumors and are correlated with tumor prognosis. We established cellular training sets to obtain auto-quantified TILs in pathological images. And we compared the characteristics of TILs in AEGJ with those in esophageal squamous cell carcinoma (ESCC) and gastric adenocarcinoma (GAC) to gain insight into the unique immune environments of these three tumors and investigate the prognostic value of TILs in these three tumors. METHODS: Utilizing a case-control study design, we analyzed 214 AEGJ, 256 GAC, and 752 ESCC cases. The TCGA dataset was used to validate prognostic value of auto-quantified TILs. The specific cellular training sets were established by experienced pathologists to determine TILs counts. Kruskal-Wallis test and multi-variable linear regression were conducted to explore TILs characteristics. Survival analyses were performed with Kaplan-Meier method and Cox proportional hazards model. RESULTS: The three cellular training sets of these cancers achieved a classification accuracy of 87.55 at least. The median auto-quantified TILs of AEGJ, GAC, and ESCC cases were 4.82%, 1.92%, and 0.12%, respectively. The TILs demonstrated varied characteristics under distinctive clinicopathological traits. The higher TILs proportion was associated with better prognosis in esophagogastric cancers (all P < 0.05) and was an independent prognostic biomarker on AEGJ in both datasets (Taixing: HR = 0.965, 95% CI = 0.938-0.994; TCGA: HR = 0.811, 95% CI = 0.712-0.925). CONCLUSIONS: We found variations in TILs across ESCC, GAC, and AEGJ, as assessed by image processing algorithms. Additionally, TILs in these three cancers are an independent prognostic factor. This enhances our understanding of the unique immune characteristics of the three tumors, improving patient outcomes.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophagogastric Junction , Lymphocytes, Tumor-Infiltrating , Stomach Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Esophagogastric Junction/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Male , Prognosis , Female , Adenocarcinoma/immunology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/mortality , Middle Aged , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Case-Control Studies , Aged
15.
Vet Microbiol ; 296: 110187, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053390

ABSTRACT

Short-beak and dwarf syndrome (SBDS) is caused by novel goose parvovirus (NGPV) infection, which leads to farm economic losses. Our research aimed to investigate the potential of administering isolated lactic acid bacteria (LAB) in alleviating SBDS in ducks. Eight wild LAB strains were isolated from duck feces and their biosecurity was investigated in both duck embryo fibroblast (DEF) and live ducks. Moreover, the LAB strains exhibited no detrimental effects on bone metabolism levels and facilitated the tight junction proteins (TJPs) mRNA expression, and contributing to the mitigation of inflammation in healthy ducks. Subsequently, we conducted in vitrol and in vivo experiments to assess the impact of LAB on NGPV infection. The LAB strains significantly reduced the viral load of NGPV and downregulated the mRNA levels of pro-inflammatory factors in DEF. Additionally, LAB treatment alleviated SBDS in NGPV-infected ducks. Furthermore, LAB treatment alleviated intestinal damage, and reduced the inflammatory response, while also mitigating bone resorption in NGPV-infected ducks. In conclusion, the LAB strains isolated from duck feces have favorable biosecurity and alleviate SBDS in ducks, and the mechanism related to LAB improves intestinal barrier integrity, alleviates inflammation, and reduces bone resorption. Our study presents a novel concept for the prevention and treatment of NGPV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NGPV.


Subject(s)
Ducks , Inflammation , Lactobacillales , Poultry Diseases , Animals , Ducks/virology , Ducks/microbiology , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Poultry Diseases/virology , Inflammation/veterinary , Inflammation/prevention & control , Lactobacillales/genetics , Parvoviridae Infections/veterinary , Parvoviridae Infections/prevention & control , Parvoviridae Infections/virology , Parvoviridae Infections/microbiology , Feces/microbiology , Feces/virology , Bone Resorption/prevention & control , Bone Resorption/microbiology , Bone Resorption/veterinary , Intestines/microbiology , Intestines/virology , Probiotics/administration & dosage , Probiotics/pharmacology , Probiotics/therapeutic use , Parvovirus/genetics , Geese/virology
16.
Sci Total Environ ; 933: 173166, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735315

ABSTRACT

Lead (Pb) contamination in wheat grain is of great concern, especially in North China. Atmospheric deposition is a major contributor to Pb accumulation in wheat grain. Screening low Pb accumulating wheat varieties has been an effective method for addressing Pb contamination in wheat grain. However, identifying wheat varieties with low Pb accumulation based on foliar uptake of atmospheric Pb has been neglected. Therefore, two field trials with distinct atmospheric Pb deposition were conducted to screen for stable varieties with low Pb accumulation. It was verified that YB700 and CH58, which have high thousand-grain weights and stable low Pb accumulation in field 1 (0.19 and 0.13 mg kg-1) and field 2 (0.17 and 0.20 mg kg-1), respectively, were recommended for cultivation in atmospheric Pb contaminated farmlands in North China. Furthermore, indoor experiments were conducted to investigate Pb uptake by the roots and leaves of different wheat varieties. Our findings indicate that Pb accumulation in different wheat varieties is primarily influenced by foliar Pb uptake rather than root Pb uptake. Interestingly, there was a positive correlation (p < 0.05) between the Pb concentrations in leaves and the stomatal width and trichome length of the adaxial epidermal surface. Additionally, there is a positive correlation (p < 0.01) between the Pb concentration in the wheat grain and trichome length. In conclusion, the screening of wheat varieties with narrower stomatal widths or shorter trichomes based on foliar uptake pathways is an effective strategy for ensuring food safety in areas contaminated by atmospheric Pb.


Subject(s)
Lead , Plant Leaves , Soil Pollutants , Triticum , Triticum/metabolism , Lead/metabolism , Plant Leaves/metabolism , China , Soil Pollutants/metabolism , Soil Pollutants/analysis , Environmental Monitoring/methods , Air Pollutants/analysis
17.
J Hazard Mater ; 476: 135166, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991635

ABSTRACT

Minimization of cadmium (Cd) accumulation in wheat grain (Triticum aestivum L.) is an important way to prevent Cd hazards to humans. However, little is known about the mechanisms of varietal variation of Cd accumulation in wheat grain. This study explores the physiological mechanisms of Cd bioaccumulation through field and hydroponic experiments on two wheat varieties of low-Cd-accumulating variety (L-6331) and high-Cd-accumulating variety (H-6049). Field study showed that average Cd accumulative rates in spikes of H-6049 were 1.57-fold of L-6331 after flowering, ultimately grain-Cd of H-6049 was 1.70-fold of L-6331 in Cd-contaminated farmland. The hydroponic experiment further confirmed that more vegetative tissues of L-6331 were involved in the remobilization of Cd, which jointly mitigated the process of Cd loaded to grains when leaf-cutting conducted after Cd stress. Additionally, the L1 and N1 of L-6331 play an especially important role in regulating Cd remobilization, and the larger EVB areas in N1 have the morphological feature that facilitates the transfer of Cd to L1. Overall results implied that low-Cd-accumulating variety initiated more trade-offs of reproductive growth and Cd remobilizatoin under Cd-stress after flowering compared with high-Cd-accumulating variety, and provided new insights into the processes of Cd loaded into wheat grains among different varieties.


Subject(s)
Cadmium , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/growth & development , Cadmium/metabolism , Soil Pollutants/metabolism , Bioaccumulation , Reproduction , Edible Grain/metabolism , Edible Grain/growth & development
18.
Waste Manag ; 172: 208-215, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37924596

ABSTRACT

The migration process of chlorine during municipal solid waste (MSW) pellets pyrolysis was studied in a fixed bed reactor. Distribution and speciation changes of chlorine at different pyrolysis temperatures were determined by ion chromatography (IC) and X-ray photoelectron spectroscopy (XPS) analyses. Results showed that chlorine was mainly distributed in pyrolysis char (42.36-65.29 %) and gas (26.66-35.03 %) after MSW pellets pyrolysis. With the temperature increasing, chlorine in char and tar was enriched due to the increase of chlorine release and the decrease of product yields, with chlorine concentration increasing to 3498 ppm and 1415 ppm at 800 °C, respectively. Results of chlorine forms analysis indicated that most of the organic-Cl in MSW was released into the volatiles during pyrolysis due to the dissociation of CCl. Inorganic-Cl became the dominant form of chlorine in char after pyrolysis, with the proportion increasing from 46.69 % (raw) to 61.22 % (500 °C), which also suggested that part of organic-Cl was converted into the inorganic-Cl. Notably, the proportions of inorganic-Cl decreased at >600 °C due to the migration of inorganic. In addition, the pyrolysis release behavior of chlorine was affected by the pore structure of char, which could be inhibited by the unprosperous pores in char, especially at low temperatures (<600 °C). These findings provided a reference for the chlorine regulation of MSW pyrolytic products.


Subject(s)
Chlorine , Solid Waste , Pyrolysis , Hot Temperature
19.
J Hazard Mater ; 444(Pt A): 130385, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36403447

ABSTRACT

Atmospheric fine particulate matter (PM2.5) mainly contributes to Pb accumulation in the edible leaves of Chinese cabbage in North China. It was found that a low-Pb-accumulation (LPA) genotype of Chinese cabbage contained less Pb in leaves than high-Pb-accumulation (HPA) genotype exposed to PM2.5-Pb. However, there are no data on the transcriptional regulatory mechanisms of foliar PM2.5-Pb uptake by Chinese cabbage. The present study investigated the retention of PM2.5-Pb in foliar apoplast and symplasm and the underlying molecular mechanisms of reduced Pb in LPA leaves. It appeared more Pb in apoplast and less Pb in symplasm of LPA leaves, whereas the pattern was opposite in HPA. There were 2646 and 3095 differentially expressed genes (DEGs) in LPA and HPA leaves under PM2.5-Pb stress with clearly genotype-specific function, respectively. Furthermore, mRNA levels of XTH16 regulating cell wall thickening, PME2 and PME6 involved in cell wall remodification were significantly expressed in LPA, but not in HPA. Meanwhile, foliar PM2.5-Pb stress downregulated expression of ZIP1, YSL1, and CNGC3 responsible for Pb influx to cell, and upregulated expression of ABCG36 regulated Pb efflux from symplasm in LPA leaves. These results improve our understanding to the mechanisms underlying foliar Pb uptake from PM2.5-Pb at transcriptomic level.


Subject(s)
Brassica , Transcriptome , Lead , Genotype , China , Particulate Matter , Brassica/genetics
20.
Int J Biol Macromol ; 234: 123646, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36775226

ABSTRACT

Lysozyme is used as a food preservative, biological medicine, and infant food additive as a natural anti-infective chemical having bactericidal activity and abundantly secreted in mammals' milk, saliva, etc. We systematically analyzed the 16 coding LYZ genes (C and G-type) in buffalo and cattle to elucidate their evolutionary perspective thoroughly by evaluating an evolutionary relationship, motif patterning, physicochemical attributes, gene, and protein structure, as well as the functional role of the mammary gland-specific expressed buffalo and cattle LYZ genes precisely while considering expression levels difference and the interaction sites variation with bacteria envisaged the potential ability of buffalo LYZ protein with enhanced antibacterial effect. Thus, we speculated that the buffalo mammary glands expressed lysozyme has good antibacterial activity. This study on the buffalo lysozyme gene family not only provides comprehensive insights into the genetic architecture and their antibacterial effect but also offers a theoretical basis for the development of new veterinary drugs and animal health care for mastitis, as well as a new molecular genetic basis to study food or medical lysozyme.


Subject(s)
Milk , Muramidase , Animals , Cattle , Female , Anti-Bacterial Agents/pharmacology , Biological Evolution , Buffaloes/genetics , Molecular Biology , Muramidase/genetics , Muramidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL