Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38513665

ABSTRACT

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Subject(s)
Interleukin-23 , Periodontitis , Humans , Epithelial Cells , Inflammation , Toll-Like Receptor 5/metabolism
2.
Environ Sci Technol ; 58(4): 1802-1812, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38217501

ABSTRACT

Humans interact with thousands of chemicals. This study aims to identify substances of emerging concern and in need of human health risk evaluations. Sixteen pooled human serum samples were constructed from 25 individual samples each from the National Institute of Environmental Health Sciences' Clinical Research Unit. Samples were analyzed using gas chromatography (GC) × GC/time-of-flight (TOF)-mass spectrometry (MS) in a suspect screening analysis, with follow-up confirmation analysis of 19 substances. A standard reference material blood sample was also analyzed through the confirmation process for comparison. The pools were stratified by sex (female and male) and by age (≤45 and >45). Publicly available information on potential exposure sources was aggregated to annotate presence in serum as either endogenous, food/nutrient, drug, commerce, or contaminant. Of the 544 unique substances tentatively identified by spectral matching, 472 were identified in females, while only 271 were identified in males. Surprisingly, 273 of the identified substances were found only in females. It is known that behavior and near-field environments can drive exposures, and this work demonstrates the existence of exposure sources uniquely relevant to females.


Subject(s)
Gas Chromatography-Mass Spectrometry , Hematologic Tests , Female , Humans , Male , Gas Chromatography-Mass Spectrometry/methods , Hematologic Tests/methods , Adult , Middle Aged
3.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L413-L432, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36719087

ABSTRACT

The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.


Subject(s)
COVID-19 , Animals , Humans , Rats , Hyaluronic Acid , Pandemics , Peptidyl-Dipeptidase A/metabolism , Proteome , Proteomics , RNA, Viral , SARS-CoV-2/metabolism
4.
Am J Physiol Cell Physiol ; 323(1): C202-C214, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35675639

ABSTRACT

The extracellular matrix (ECM) is an active and dynamic feature of tissues that not only provides gross structure but also plays key roles in cellular responses. The ever-changing microenvironment responds dynamically to cellular and external signals, and in turn influences cell fate, tissue development, and response to environmental injury or microbial invasion. It is therefore paramount to understand how the ECM components interact with each other, the environment and cells, and how they mediate their effects. Among the ECM components that have recently garnered increased attention, proteoglycans (PGs) deserve special note. Recent evidence strongly suggests that they play a crucial role both in health maintenance and disease development. In particular, proteoglycans dictate whether homeostasis or cell death will result from a given injury, by triggering and modulating activation of the innate immune system, via a conserved array of receptors that recognize exogenous (infectious) or endogenous (tissue damage) molecular patterns. Innate immune activation by proteoglycans has important implications for the understanding of cell-matrix interactions in health and disease. In this review, we will summarize the current state of knowledge of innate immune signaling by proteoglycans, discuss the implications, and explore future directions to define progress in this area of extracellular matrix biology.


Subject(s)
Proteoglycans , Toll-Like Receptors , Extracellular Matrix/metabolism , Immunity, Innate , Proteoglycans/metabolism , Signal Transduction
5.
Respir Res ; 22(1): 30, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33517896

ABSTRACT

BACKGROUND: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) carry significant morbidity and mortality. AECOPD treatment remains limited. High molecular weight hyaluronan (HMW-HA) is a glycosaminoglycan sugar, which is a physiological constituent of the lung extracellular matrix and has notable anti-inflammatory and hydrating properties. RESEARCH QUESTION: We hypothesized that inhaled HMW-HA will improve outcomes in AECOPD. METHODS: We conducted a single center, randomized, placebo-controlled, double-blind study to investigate the effect of inhaled HMW-HA in patients with severe AECOPD necessitating non-invasive positive-pressure ventilation (NIPPV). Primary endpoint was time until liberation from NIPPV. RESULTS: Out of 44 screened patients, 41 were included in the study (21 for placebo and 20 for HMW-HA). Patients treated with HMW-HA had significantly shorter duration of NIPPV. HMW-HA treated patients also had lower measured peak airway pressures on the ventilator and lower systemic inflammation markers after liberation from NIPPV. In vitro testing showed that HMW-HA significantly improved mucociliary transport in air-liquid interface cultures of primary bronchial cells from COPD patients and healthy primary cells exposed to cigarette smoke extract. INTERPRETATION: Inhaled HMW-HA shortens the duration of respiratory failure and need for non-invasive ventilation in patients with AECOPD. Beneficial effects of HMW-HA on mucociliary clearance and inflammation may account for some of the effects (NCT02674880, www.clinicaltrials.gov ).


Subject(s)
Hyaluronic Acid/administration & dosage , Inflammation Mediators/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/metabolism , Adjuvants, Immunologic/administration & dosage , Administration, Inhalation , Aged , Aged, 80 and over , Cells, Cultured , Double-Blind Method , Female , Humans , Inflammation Mediators/antagonists & inhibitors , Length of Stay/trends , Male , Middle Aged , Molecular Weight , Pilot Projects , Tobacco Smoke Pollution/adverse effects
6.
J Immunol ; 202(5): 1540-1548, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30683702

ABSTRACT

IL-17A is a critical proinflammatory cytokine for the pathogenesis of asthma including neutrophilic pulmonary inflammation and airway hyperresponsiveness. In this study, by cell type-specific deletion of IL-17R and adaptor Act1, we demonstrated that IL-17R/Act1 exerts a direct impact on the contraction of airway smooth muscle cells (ASMCs). Mechanistically, IL-17A induced the recruitment of Rab35 (a small monomeric GTPase) and DennD1C (guanine nucleotide exchange factor [GEF]) to the IL-17R/Act1 complex in ASMCs, resulting in activation of Rab35. Rab35 knockdown showed that IL-17A-induced Rab35 activation was essential for protein kinase Cα (PKCα) activation and phosphorylation of fascin at Ser39 in ASMCs, allowing F-actin to interact with myosin to form stress fibers and enhance the contraction induced by methacholine. PKCα inhibitor or Rab35 knockdown indeed substantially reduced IL-17A-induced stress fiber formation in ASMCs and attenuated IL-17A-enhanced, methacholine-induced contraction of airway smooth muscle. Taken together, these data indicate that IL-17A promotes airway smooth muscle contraction via direct recruitment of Rab35 to IL-17R, followed by PKCα activation and stress fiber formation.


Subject(s)
Interleukin-17/metabolism , Muscle, Smooth/metabolism , Protein Kinase C-alpha/antagonists & inhibitors , Receptors, Interleukin-17/metabolism , Stress Fibers/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Interleukin-17/antagonists & inhibitors , Interleukin-17/deficiency , Mice , Mice, Knockout , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Protein Kinase C-alpha/metabolism , Protein Kinase Inhibitors/pharmacology , Receptors, Interleukin-17/antagonists & inhibitors , Stress Fibers/drug effects , rab GTP-Binding Proteins/antagonists & inhibitors
7.
Am J Respir Cell Mol Biol ; 62(3): 283-299, 2020 03.
Article in English | MEDLINE | ID: mdl-31661299

ABSTRACT

The lung microbiome is associated with host immune response and health outcomes in experimental models and patient cohorts. Lung microbiome research is increasing in volume and scope; however, there are no established guidelines for study design, conduct, and reporting of lung microbiome studies. Standardized approaches to yield reliable and reproducible data that can be synthesized across studies will ultimately improve the scientific rigor and impact of published work and greatly benefit microbiome research. In this review, we identify and address several key elements of microbiome research: conceptual modeling and hypothesis framing; study design; experimental methodology and pitfalls; data analysis; and reporting considerations. Finally, we explore possible future directions and research opportunities. Our goal is to aid investigators who are interested in this burgeoning research area and hopefully provide the foundation for formulating consensus approaches in lung microbiome research.


Subject(s)
Epidemiologic Methods , Lung/microbiology , Microbiota , Animals , Anti-Infective Agents/pharmacology , Bacterial Typing Techniques , Body Fluids/microbiology , Breath Tests , Dysbiosis/microbiology , Environmental Exposure , Host Microbial Interactions , Humans , Metagenomics/methods , Microbiological Techniques , Microbiota/drug effects , Models, Animal , Models, Biological , Reproducibility of Results , Respiratory System/microbiology , Specimen Handling/methods , Sputum/microbiology , Translational Research, Biomedical , Whole Genome Sequencing
8.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L459-L471, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31913654

ABSTRACT

We investigated the mechanisms involved in the development of airway hyperresponsiveness (AHR) following exposure of mice to halogens. Male mice (C57BL/6; 20-25 g) exposed to either bromine (Br2) or Cl2 (600 or 400 ppm, respectively, for 30 min) developed AHR 24 h after exposure. Nifedipine (5 mg/kg body wt; an L-type calcium channel blocker), administered subcutaneously after Br2 or Cl2 exposure, produced higher AHR compared with Br2 or Cl2 alone. In contrast, diltiazem (5 mg/kg body wt; a nondihydropyridine L-type calcium channel blocker) decreased AHR to control (air) values. Exposure of immortalized human airway smooth muscle cells (hASMC) to Br2 resulted in membrane potential depolarization (Vm Air: 62 ± 3 mV; 3 h post Br2:-45 ± 5 mV; means ± 1 SE; P < 0.001), increased intracellular [Ca2+]i, and increased expression of the calcium-sensing receptor (Ca-SR) protein. Treatment of hASMC with a siRNA against Ca-SR significantly inhibited the Br2 and nifedipine-induced Vm depolarization and [Ca2+]i increase. Intranasal administration of an antagonist to Ca-SR in mice postexposure to Br2 reversed the effects of Br2 and nifedipine on AHR. Incubation of hASMC with low-molecular-weight hyaluronan (LMW-HA), generated by exposing high-molecular-weight hyaluronan (HMW-HA) to Br2, caused Vm depolarization, [Ca2+]i increase, and Ca-SR expression to a similar extent as exposure to Br2 and Cl2. The addition of HMW-HA to cells or mice exposed to Br2, Cl2, or LMW-HA reversed these effects in vitro and improved AHR in vivo. We conclude that detrimental effects of halogen exposure on AHR are mediated via activation of the Ca-SR by LMW-HA.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium/metabolism , Hyaluronic Acid/pharmacology , Muscle, Smooth/drug effects , Receptors, Calcium-Sensing/metabolism , Respiratory Hypersensitivity/drug therapy , Viscosupplements/pharmacology , Animals , Bromine/toxicity , Cells, Cultured , Chlorides/toxicity , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Weight , Muscle, Smooth/metabolism , Receptors, Calcium-Sensing/antagonists & inhibitors , Receptors, Calcium-Sensing/genetics , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology
9.
J Autoimmun ; 107: 102363, 2020 02.
Article in English | MEDLINE | ID: mdl-31759816

ABSTRACT

BACKGROUND: Because immune responses are sensitive to environmental changes that drive selection of genetic variants, we hypothesized that polymorphisms of some xenobiotic response and immune response genes may be associated with specific types of immune-mediated diseases (IMD), while others may be associated with IMD as a larger category regardless of specific phenotype or ethnicity. OBJECTIVE: To examine transethnic gene-IMD associations for single nucleotide polymorphism (SNP) frequencies of prototypic xenobiotic response genes-aryl hydrocarbon receptor (AHR), AHR nuclear translocator (ARNT), AHR repressor (AHRR) - and a prototypic immune response gene, protein tyrosine phosphatase, non-receptor type 22 (PTPN22), in subjects from the Environmental Polymorphisms Registry (EPR). METHODS: Subjects (n = 3731) were genotyped for 14 SNPs associated with functional variants of the AHR, ARNT, AHRR, and PTPN22 genes, and their frequencies were compared among African Americans (n = 1562), Caucasians (n = 1838), and Hispanics (n = 331) with previously reported data. Of those genotyped, 2015 EPR subjects completed a Health and Exposure survey. SNPs were assessed via PLINK for associations with IMD, which included those with autoimmune diseases, allergic disorders, asthma, or idiopathic pulmonary fibrosis. Transethnic meta-analyses were performed using METAL and MANTRA approaches. RESULTS: ARNT SNP rs11204735 was significantly associated with autoimmune disease by transethnic meta-analyses using METAL (odds ratio, OR [95% confidence interval] = 1.29 [1.08-1.55]) and MANTRA (ORs ranged from 1.29 to 1.30), whereas ARNT SNP rs1889740 showed a significant association with autoimmune disease by METAL (OR = 1.25 [1.06-1.47]). For Caucasian females, PTPN22 SNP rs2476601 was significantly associated with autoimmune disease by allelic association tests (OR = 1.99, [1.30-3.04]). In Caucasians and Caucasian males, PTPN22 SNP rs3811021 was significantly associated with IMD (OR = 1.39 [1.12-1.72] and 1.50 [1.12-2.02], respectively) and allergic disease (OR = 1.39 [1.12-1.71], and 1.62 [1.19-2.20], respectively). In the transethnic meta-analysis, PTPN22 SNP rs3811021 was significantly implicated in IMD by METAL (OR = 1.31 [1.10-1.56]), and both METAL and MANTRA suggested that rs3811021 was associated with IMD and allergic disease in males across all three ethnic groups (IMD METAL OR = 1.50 [1.15-1.95]; IMD MANTRA ORs ranged from 1.47 to 1.50; allergic disease METAL OR = 1.58 [1.20-2.08]; allergic disease MANTRA ORs ranged from 1.55 to 1.59). CONCLUSIONS: Some xenobiotic and immune response gene polymorphisms were shown here, for the first time, to have associations across a broad spectrum of IMD and ethnicities. Our findings also suggest a role for ARNT in the development of autoimmune diseases, implicating environmental factors metabolized by this pathway in pathogenesis. Further studies are needed to confirm these data, assess the implications of these findings, define gene-environment interactions, and explore the mechanisms leading to these increasingly prevalent disorders.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Immunomodulation/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Alleles , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmunity , Genotype , Humans , Linkage Disequilibrium , Phenotype
10.
J Toxicol Environ Health A ; 83(6): 233-248, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32249687

ABSTRACT

Oil spill response and clean-up (OSRC) workers were exposed to hazardous airborne chemicals following the 2010 Deepwater Horizon disaster. The aim of this study was to evaluate lung function in workers 4-6 years following the disaster using a prospective cohort. Participants who completed two spirometry test sessions 1-3 years, and 4-6 years after the spill (N = 1,838) were included and forced expiratory volume in 1 s (FEV1; ml), forced vital capacity (FVC; ml), and ratio (FEV1/FVC; %) determined. Linear mixed models were utilized to estimate relationships between OSRC exposures and lung function 4-6 years after the spill and changes since the prior measurement. Despite suggestive reduced lung function at 1-3 years, at the  4-6-year exam workers with total hydrocarbon (THC) exposure 1-2.99 ppm and ≥3 ppm compared to those with ≤0.29 ppm exhibited higher FEV1 (ß: 108 ml, 95% CI: 17, 198) and (ß: 118 ml, 95% CI: 5, 232), respectively. Compared with support workers, those in higher exposed jobs displayed greater improvement in FEV1 between visits: cleanup on water (ß: 143 ml, 95% CI: 35, 250), operations (ß: 132 ml, 95% CI: 30, 234) and response (ß: 149 ml, 95% CI: 43, 256). Greater FEV1 improvement was also associated with higher versus the lowest level THC exposure: 1-2.99 ppm (ß: 134 ml, 95% CI: 57, 210) and ≥3 ppm (ß: 205 ml, 95% CI: 109, 301). Lung function decrements seen shortly after the spill were no longer apparent 4-6 years later, with the greatest improvement among those with the highest exposures.


Subject(s)
Disasters , Lung Diseases/chemically induced , Petroleum Pollution/adverse effects , Petroleum/adverse effects , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Occupational Exposure
11.
Lung ; 197(3): 361-369, 2019 06.
Article in English | MEDLINE | ID: mdl-31028466

ABSTRACT

PURPOSE: Vascular endothelial cells demonstrate severe injury in sepsis, and a reduction in endothelial inflammation would be beneficial. Inter-α-Inhibitor (IαI) is a family of abundant plasma proteins with anti-inflammatory properties and has been investigated in human and animal sepsis with encouraging results. We hypothesized that IαI may protect endothelia from sepsis-related inflammation. METHODS: IαI-deficient or sufficient mice were treated with endotoxin or underwent complement-induced lung injury. VCAM-1 and ICAM-1 expression was measured in blood and lung as marker of endothelial activation. Human endothelia were exposed to activated complement C5a with or without IαI. Blood from human sepsis patients was examined for VCAM-1 and ICAM-1 and levels were correlated with blood levels of IαI. RESULTS: IαI-deficient mice showed increased endothelial activation in endotoxin/sepsis- and complement-induced lung injury models. In vitro, levels of endothelial pro-inflammatory cytokines and cell growth factors induced by activated complement C5a were significantly decreased in the presence of IαI. This effect was associated with decreased ERK and NFκB activation. IαI levels were inversely associated with VCAM-1 and ICAM-1 levels in a human sepsis cohort. CONCLUSIONS: IαI ameliorates endothelial inflammation and may be beneficial as a treatment of sepsis.


Subject(s)
Acute Lung Injury/immunology , Alpha-Globulins/immunology , Endothelial Cells/immunology , Endothelium, Vascular/immunology , Lung/immunology , Sepsis/immunology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Alpha-Globulins/deficiency , Alpha-Globulins/metabolism , Alpha-Globulins/pharmacology , Animals , Complement C5a/immunology , Complement C5a/pharmacology , Disease Models, Animal , E-Selectin/immunology , E-Selectin/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endotoxins/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , In Vitro Techniques , Inflammation , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/immunology , Intercellular Adhesion Molecule-1/metabolism , Lung/drug effects , Lung/metabolism , Lung/pathology , MAP Kinase Signaling System , Mice , NF-kappa B/drug effects , NF-kappa B/immunology , NF-kappa B/metabolism , Sepsis/genetics , Sepsis/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology , Vascular Cell Adhesion Molecule-1/metabolism
12.
J Biol Chem ; 292(51): 20845-20858, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29122888

ABSTRACT

Exposure to pollutants, such as ozone, exacerbates airway inflammation and hyperresponsiveness (AHR). TNF-stimulated gene 6 (TSG-6) is required to transfer inter-α-inhibitor heavy chains (HC) to hyaluronan (HA), facilitating HA receptor binding. TSG-6 is necessary for AHR in allergic asthma, because it facilitates the development of a pathological HA-HC matrix. However, the role of TSG-6 in acute airway inflammation is not well understood. Here, we hypothesized that TSG-6 is essential for the development of HA- and ozone-induced AHR. TSG-6-/- and TSG-6+/+ mice were exposed to ozone or short-fragment HA (sHA), and AHR was assayed via flexiVent. The AHR response to sHA was evaluated in the isolated tracheal ring assay in tracheal rings from TSG-6-/- or TSG-6+/+, with or without the addition of exogenous TSG-6, and with or without inhibitors of Rho-associated, coiled-coil-containing protein kinase (ROCK), ERK, or PI3K. Smooth-muscle cells from mouse tracheas were assayed in vitro for signaling pathways. We found that TSG-6 deficiency protects against AHR after ozone (in vivo) or sHA (in vitro and in vivo) exposure. Moreover, TSG-6-/- tracheal ring non-responsiveness to sHA was reversed by exogenous TSG-6 addition. sHA rapidly activated RhoA, ERK, and Akt in airway smooth-muscle cells, but only in the presence of TSG-6. Inhibition of ROCK, ERK, or PI3K/Akt blocked sHA/TSG-6-mediated AHR. In conclusion, TSG-6 is necessary for AHR in response to ozone or sHA, in part because it facilitates rapid formation of HA-HC complexes. The sHA/TSG-6 effect is mediated by RhoA, ERK, and PI3K/Akt signaling.


Subject(s)
Alpha-Globulins/metabolism , Cell Adhesion Molecules/metabolism , Hyaluronic Acid/metabolism , Respiratory Hypersensitivity/etiology , Respiratory Hypersensitivity/metabolism , Air Pollutants/toxicity , Alpha-Globulins/chemistry , Animals , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Disease Models, Animal , Hyaluronic Acid/chemistry , In Vitro Techniques , Macromolecular Substances/chemistry , Macromolecular Substances/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Models, Biological , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Ozone/toxicity , Signal Transduction/drug effects , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein
13.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L787-L798, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30188746

ABSTRACT

Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR). Importantly, the effects of sHA can be antagonized by the physiological counterpart high molecular weight HA (HMWHA). We used a mouse model of house dust mite-induced allergic airway inflammation and demonstrated that instilled HMWHA ameliorated allergic airway inflammation and AHR, even when given after the establishment of allergic sensitization and after challenge exposures. Furthermore, instilled HMWHA reduced the development of HA-HC complexes and the activation of Rho-associated, coiled-coil containing protein kinase 2. We conclude that airway application of HMWHA is a potential treatment for allergic airway inflammation.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Disease Models, Animal , Hyaluronic Acid/administration & dosage , Inflammation/prevention & control , Pyroglyphidae/pathogenicity , Respiratory Hypersensitivity/prevention & control , Animals , Female , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Molecular Weight , Respiratory Hypersensitivity/etiology
14.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L808-L821, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29368549

ABSTRACT

Acid (HCl) aspiration during anesthesia may lead to acute lung injury. There is no effective therapy. We hypothesized that HCl instilled intratracheally in C57BL/6 mice results in the formation of low-molecular weight hyaluronan (L-HA), which activates RhoA and Rho kinase (ROCK), causing airway hyperresponsiveness (AHR) and increased permeability. Furthermore, instillation of high-molecular weight hyaluronan (H-HA; Yabro) will reverse lung injury. We instilled HCl in C57BL/6 wild-type (WT), myeloperoxidase gene-deficient (MPO-/-) mice, and CD44 gene-deficient (CD44-/-) mice. WT mice were also instilled intranasally with H-HA (Yabro) at 1 and 23 h post-HCl. All measurements were performed at 1, 5, or 24 h post-HCl. Instillation of HCl in WT but not in CD44-/- resulted in increased inflammation, AHR, lung injury, and L-HA in the bronchoalveolar lavage fluid (BALF) 24 h post-HCl; L-HA levels and lung injury were significantly lower in HCl-instilled MPO-/- mice. Isolated perfused lungs of HCl instilled WT but not of CD44-/- mice had elevated values of the filtration coefficient ( Kf). Addition of L-HA on the apical surface of human primary bronchial epithelial cell monolayer decreased barrier resistance ( RT). H-HA significantly mitigated inflammation, AHR, and pulmonary vascular leakage at 24 h after HCl instillation and mitigated the increase of Kf and RT, as well as ROCK2 phosphorylation. Increased H- and L-HA levels were found in the BALF of mechanically ventilated patients but not in healthy volunteers. HCl instillation-induced lung injury is mediated by the L-HA-CD44-RhoA-ROCK2 signaling pathway, and H-HA is a potential novel therapeutic agent for acid aspiration-induced lung injury.


Subject(s)
Acute Lung Injury/drug therapy , Blood-Air Barrier/drug effects , Hyaluronan Receptors/physiology , Hyaluronic Acid/pharmacology , Hydrochloric Acid/toxicity , Peroxidase/physiology , Pneumonia/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Blood-Air Barrier/metabolism , Blood-Air Barrier/pathology , Bronchoalveolar Lavage Fluid/chemistry , Cells, Cultured , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Gas Exchange , Viscosupplements/pharmacology
15.
Respir Res ; 19(1): 107, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855321

ABSTRACT

BACKGROUND: Several inflammatory lung diseases display abundant presence of hyaluronic acid (HA) bound to heavy chains (HC) of serum protein inter-alpha-inhibitor (IαI) in the extracellular matrix. The HC-HA modification is critical to neutrophil sequestration in liver sinusoids and to survival during experimental lipopolysaccharide (LPS)-induced sepsis. Therefore, the covalent HC-HA binding, which is exclusively mediated by tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6), may play an important role in the onset or the resolution of lung inflammation in acute lung injury (ALI) induced by respiratory infection. METHODS: Reversible ALI was induced by a single intratracheal instillation of LPS or Pseudomonas aeruginosa in mice and outcomes were studied for up to six days. We measured in the lung or the bronchoalveolar fluid HC-HA formation, HA immunostaining localization and roughness, HA fragment abundance, and markers of lung inflammation and lung injury. We also assessed TSG-6 secretion by TNFα- or LPS-stimulated human alveolar macrophages, lung fibroblast Wi38, and bronchial epithelial BEAS-2B cells. RESULTS: Extensive HC-modification of lung HA, localized predominantly in the peri-broncho-vascular extracellular matrix, was notable early during the onset of inflammation and was markedly decreased during its resolution. Whereas human alveolar macrophages secreted functional TSG-6 following both TNFα and LPS stimulation, fibroblasts and bronchial epithelial cells responded to only TNFα. Compared to wild type, TSG-6-KO mice, which lacked HC-modified HA, exhibited modest increases in inflammatory cells in the lung, but no significant differences in markers of lung inflammation or injury, including histopathological lung injury scores. CONCLUSIONS: Respiratory infection induces rapid HC modification of HA followed by fragmentation and clearance, with kinetics that parallel the onset and resolution phase of ALI, respectively. Alveolar macrophages may be an important source of pulmonary TSG-6 required for HA remodeling. The formation of HC-modified HA had a minor role in the onset, severity, or resolution of experimental reversible ALI induced by respiratory infection with gram-negative bacteria.


Subject(s)
Acute Lung Injury/metabolism , Alpha-Globulins/metabolism , Hyaluronic Acid/metabolism , Macrophages, Alveolar/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/microbiology , Animals , Cells, Cultured , Humans , Lipopolysaccharides/toxicity , Macrophages, Alveolar/drug effects , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Mucociliary Clearance/drug effects , Mucociliary Clearance/physiology , Protein Binding , Time Factors
17.
Am J Respir Cell Mol Biol ; 57(6): 702-710, 2017 12.
Article in English | MEDLINE | ID: mdl-28787175

ABSTRACT

Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.


Subject(s)
Asthma/enzymology , Gene Expression Regulation, Enzymologic , Hyaluronan Synthases/biosynthesis , Lung/enzymology , Myocytes, Smooth Muscle/enzymology , Myofibroblasts/enzymology , Actins/biosynthesis , Actins/genetics , Allergens/toxicity , Animals , Asthma/chemically induced , Asthma/genetics , Bronchoconstriction/drug effects , Bronchoconstriction/genetics , Chronic Disease , Humans , Hyaluronan Synthases/genetics , Lung/pathology , Mice , Mice, Knockout , Myocytes, Smooth Muscle/pathology , Myofibroblasts/pathology
18.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L328-L338, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28473325

ABSTRACT

Primary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.


Subject(s)
Airway Remodeling/physiology , Bronchi/pathology , Cilia/pathology , Asthma/metabolism , Asthma/pathology , Bronchi/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Cells, Cultured , Cilia/metabolism , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Membrane Potentials/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Signal Transduction/physiology
19.
Lab Invest ; 97(11): 1282-1295, 2017 11.
Article in English | MEDLINE | ID: mdl-28759007

ABSTRACT

Alternative splicing of the human glucocorticoid receptor gene generates two isoforms, hGRα and hGRß. hGRß functions as a dominant-negative regulator of hGRα activity and but also has inherent transcriptional activity, collectively altering glucocorticoid sensitivity. Single-nucleotide polymorphisms in the 3' UTR of hGRß have been associated with altered receptor protein expression, glucocorticoid sensitivity, and disease risk. Characterization of the hGRß G3134T polymorphism has been limited to a relatively small, homogenous population. The objective of this study was to determine the prevalence of hGRß G3134T in a diverse population and assess the association of hGRß G3134T in this population with physiological outcomes. In a prospective cohort study, 3730 genetically diverse participants were genotyped for hGRß G3134T and four common GR polymorphisms. A subset of these participants was evaluated for clinical and biochemical measurements. Immortalized human osteosarcoma cells (U-2 OS), stably transfected with wild-type or G3134T hGRß, were evaluated for receptor expression, stability, and genome-wide gene expression. Glucocorticoid-mediated gene expression profiles were investigated in primary macrophages isolated from participants. In a racially diverse population, the minor allele frequency was 74% (50.7% heterozygous carriers and 23.3% homozygous minor allele), with a higher prevalence in Caucasian non-Hispanic participants. After adjusting for confounding variable, carriers of hGRß G3134T were more likely to self-report allergies, have higher serum cortisol levels, and reduced cortisol suppression in response to low-dose dexamethasone. The presence of hGRß G3134T in U-2 OS cells increased hGR mRNA stability and protein expression. Microarray analysis revealed that the presence of the hGRß G3134T polymorphism uniquely altered gene expression profiles in U-2 OS cells and primary macrophages. hGRß G3134T is significantly present in the study population and associated with race, self-reported disease, and serum levels of glucocorticoids. Underlying these health differences may be changes in gene expression driven by altered receptor stability.


Subject(s)
3' Untranslated Regions , Gene Expression Regulation , Glucocorticoids/metabolism , Polymorphism, Single Nucleotide , Receptors, Glucocorticoid/agonists , Signal Transduction , Adult , Amino Acid Substitution , Black People , Cell Line, Tumor , Cells, Cultured , Cohort Studies , Female , Genetic Association Studies , Glucocorticoids/blood , Hispanic or Latino , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Male , North Carolina , Prospective Studies , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Registries , White People
20.
Part Fibre Toxicol ; 14(1): 44, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132433

ABSTRACT

BACKGROUND: Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials used for a variety of industrial and consumer products. Their high tensile strength, hydrophobicity, and semi-conductive properties have enabled many novel applications, increasing the possibility of accidental nanotube inhalation by either consumers or factory workers. While MWCNT inhalation has been previously shown to cause inflammation and pulmonary fibrosis at high doses, the susceptibility of differentiating bronchial epithelia to MWCNT exposure remains unexplored. In this study, we investigate the effect of MWCNT exposure on cilia development in a differentiating air-liquid interface (ALI) model. Primary bronchial epithelial cells (BECs) were isolated from human donors via bronchoscopy and treated with non-cytotoxic doses of MWCNTs in submerged culture for 24 h. Cultures were then allowed to differentiate in ALI for 28 days in the absence of further MWCNT exposure. At 28 days, mucociliary differentiation endpoints were assessed, including whole-mount immunofluorescent staining, histological, immunohistochemical and ultrastructural analysis, gene expression, and cilia beating analysis. RESULTS: We found a reduction in the prevalence and beating of ciliated cells in MWCNT-treated cultures, which appeared to be caused by a disruption of cellular microtubules and cytoskeleton during ciliogenesis and basal body docking. Expression of gene markers of mucociliary differentiation, such as FOXJ1 and MUC5AC/B, were not affected by treatment. Colocalization of basal body marker CEP164 with γ-tubulin during days 1-3 of ciliogenesis, as well as abundance of basal bodies up to day 14, were attenuated by treatment with MWCNTs. CONCLUSIONS: Our results suggest that a single exposure of bronchial cells to MWCNT during a vulnerable period before differentiation may impair their ability to develop into fully functional ciliated cells.


Subject(s)
Bronchi/drug effects , Cell Differentiation/drug effects , Epithelial Cells/drug effects , Nanotubes, Carbon/toxicity , Axoneme/drug effects , Axoneme/pathology , Bronchi/metabolism , Bronchi/pathology , Cells, Cultured , Cilia/drug effects , Cilia/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Microtubule Proteins/metabolism , Movement/drug effects , Primary Cell Culture , Risk Assessment , Time Factors , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL