Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Molecules ; 27(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080159

ABSTRACT

The aim of this study was to investigate the cytotoxic activity of the Coriandrum sativum (C. sativum) ethanolic extract (CSEE) in neuroblastoma cells, chemically characterize the compounds present in the CSEE, and predict the molecular interactions and properties of ADME. Thus, after obtaining the CSEE and performing its chemical characterization through dereplication methods using UPLC/DAD-ESI/HRMS/MS, PM6 methods and the SwissADME drug design platform were used in order to predict molecular interactions and ADME properties. The CSEE was tested for 24 h in neuroblastoma cells to the establishment of the IC50 dose. Then, the cell death was evaluated, using annexin-PI, as well as the activity of the effector caspase 3, and the protein and mRNA levels of Bax and Bcl-2 were analyzed by ELISA and RT-PCR, respectively. By UHPLC/DAD/HRMS-MS/MS analysis, the CSEE showed a high content of isocoumarins-dihydrocoriandrin, coriandrin, and coriandrones A and B, as well as nitrogenated compounds (adenine, adenosine, and tryptophan). Flavonoids (apigenin, hyperoside, and rutin), phospholipids (PAF C-16 and LysoPC (16:0)), and acylglicerol were also identified in lower amount as important compounds with antioxidant activity. The in silico approach results showed that the compounds 1 to 6, which are found mostly in the C. sativum extract, obey the "Five Rules" of Lipinski, suggesting a good pharmacokinetic activity of these compounds when administered orally. The IC50 dose of CSEE (20 µg/mL) inhibited cell proliferation and promoted cell death by the accumulation of cleaved caspase-3 and the externalization of phosphatidylserine. Furthermore, CSEE decreased Bcl-2 and increased Bax, both protein and mRNA levels, suggesting an apoptotic mechanism. CSEE presents cytotoxic effects, promoting cell death. In addition to the promising results predicted through the in silico approach for all compounds, the compound 6 showed the best results in relation to stability due to its GAP value.


Subject(s)
Coriandrum , Neuroblastoma , Cell Line, Tumor , Coriandrum/chemistry , Humans , Neuroblastoma/drug therapy , Plant Extracts/chemistry , Proto-Oncogene Proteins c-bcl-2 , RNA, Messenger , Tandem Mass Spectrometry , bcl-2-Associated X Protein/genetics
2.
Antimicrob Agents Chemother ; 59(12): 7214-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26349827

ABSTRACT

Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 µg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses.


Subject(s)
Antifungal Agents/pharmacology , Organometallic Compounds/pharmacology , Palladium/pharmacology , Paracoccidioides/drug effects , Paracoccidioidomycosis/drug therapy , Animals , Antifungal Agents/chemical synthesis , Apoptosis/drug effects , Autophagy/drug effects , Cadaverine/analogs & derivatives , Cadaverine/biosynthesis , Candida albicans/drug effects , Candida albicans/growth & development , Caspases/genetics , Caspases/metabolism , Chromatin/drug effects , Chromatin/pathology , Chromatin/ultrastructure , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/growth & development , DNA Fragmentation/drug effects , Dose-Response Relationship, Drug , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Lung/drug effects , Lung/microbiology , Lung/pathology , Male , Mice , Mice, Inbred BALB C , Organometallic Compounds/chemical synthesis , Palladium/chemistry , Paracoccidioides/genetics , Paracoccidioides/growth & development , Paracoccidioides/ultrastructure , Paracoccidioidomycosis/microbiology , Paracoccidioidomycosis/pathology , Superoxides/metabolism , Vacuoles/drug effects , Vacuoles/pathology , Vacuoles/ultrastructure
3.
Front Immunol ; 11: 345, 2020.
Article in English | MEDLINE | ID: mdl-32194563

ABSTRACT

The palladacycle complex DPPE 1.2 was previously shown to inhibit Leishmania (Leishmania) amazonensis infection in vitro and in vivo. The present study aimed to evaluate the effect of DPPE 1.2 associated with a recombinant cysteine proteinase, rLdccys1, and the adjuvant Propionibacterium acnes on L. (L.) amazonensis infection in two mouse strains, BALB/c, and C57BL/6. Treatment with this association potentiated the leishmanicidal effect of DPPE 1.2 resulting in a reduction of parasite load in both strains of mice which was higher compared to that found in groups treated with either DPPE 1.2 alone or associated with P. acnes or rLdccys1. The reduction of parasite load in both mice strains was followed by immunomodulation mediated by an increase of memory CD4+ and CD8+ T lymphocytes, IFN-γ levels and reduction of active TGF-ß in treated animals. No infection relapse was observed 1 month after the end of treatment in mice which received DPPE 1.2 associated with rLdccys1 or rLdccys1 plus P. acnes in comparison to that exhibited by animals treated with DPPE 1.2 alone. Evaluation of serum levels of AST, ALT, urea, and creatinine showed no alterations among treated groups, indicating that this treatment schedule did not induce hepato or nephrotoxicity. These data indicate the potential use of this association as a therapeutic alternative for cutaneous leishmaniasis caused by L. (L) amazonensis.


Subject(s)
Antiprotozoal Agents/therapeutic use , Cysteine Endopeptidases/therapeutic use , Immunotherapy/methods , Leishmaniasis, Cutaneous/drug therapy , Propionibacterium acnes , Protozoan Proteins/therapeutic use , Animals , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/toxicity , Combined Modality Therapy , Cysteine Endopeptidases/administration & dosage , Cysteine Endopeptidases/immunology , Cysteine Endopeptidases/toxicity , Drug Evaluation, Preclinical , Female , Immunologic Memory , Interferon-gamma/metabolism , Leishmania mexicana , Leishmaniasis, Cutaneous/immunology , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Protozoan Proteins/administration & dosage , Protozoan Proteins/immunology , Protozoan Proteins/toxicity , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Recombinant Proteins/toxicity , T-Lymphocyte Subsets/immunology , Transforming Growth Factor beta/metabolism
4.
J Inorg Biochem ; 203: 110944, 2020 02.
Article in English | MEDLINE | ID: mdl-31794895

ABSTRACT

Bridge splitting reactions between [Pd(C2,N-dmba)(µ-X)]2 (dmba = N,N-dimethylbenzylamine; X = Cl, I, N3, NCO) and 2,6-lutidine (lut) in the 1:2 molar ratio at room temperature afforded cyclopalladated compounds of general formulae [Pd(C2,N-dmba)(X)(lut)] {X = Cl- (1), I-(2), NNN-(3), NCO-(4)}, which were characterized by elemental analyses and infrared (IR), 1H NMR spectroscopy. The molecular structures of all synthesized palladacycles have been solved by single-crystal X-ray crystallography. The cytotoxicity of the cyclopalladated compounds has been evaluated against a panel of murine {mammary carcinoma (4T1) and melanoma (B16F10-Nex2)} and human {melanoma (A2058, SK-MEL-110 and SK-MEL-5) tumor cell lines. All complexes were about 10 to 100-fold more active than cisplatin, depending on the tested tumor cell line. For comparison purposes, the cytotoxic effects of 1-4 towards human lung fibroblasts (MRC-5) have also been tested. The late apoptosis-inducing properties of 1-4 compounds in SK-MEL-5 cells were verified 24 h incubation using annexin V-Fluorescein isothiocyanate (FITC)/propidium iodide (PI). The binding properties of the model compound 1 on human serum albumin (HSA) and calf thymus DNA (ct-DNA) have been studied using circular dichroism and fluorescence spectroscopy. Docking simulations have been carried out to gain more information about the interaction of the palladacycle and HSA. The ability of compounds 1-4 to inhibit the activity of cathepsin B and L has also been investigated in this work.


Subject(s)
Antineoplastic Agents/chemical synthesis , Organometallic Compounds/chemical synthesis , Palladium/chemistry , Protease Inhibitors/chemical synthesis , Pyridines/chemistry , Animals , Antineoplastic Agents/pharmacology , Benzylamines/chemistry , Cathepsins/antagonists & inhibitors , Cathepsins/chemistry , Cell Line , Cell Line, Tumor , DNA/metabolism , Humans , Mice , Molecular Docking Simulation , Organometallic Compounds/pharmacology , Protease Inhibitors/pharmacology , Protein Binding , Serum Albumin/chemistry , Serum Albumin/metabolism
5.
J Integr Med ; 17(2): 132-140, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30799248

ABSTRACT

OBJECTIVE: Although Angelica archangelica is a medicinal and aromatic plant with a long history of use for both medicinal and food purposes, there are no studies regarding the antineoplastic activity of its root. This study aimed to evaluate the cytotoxicity and antitumor effects of the crude extract of A. archangelica root (CEAA) on breast cancer. METHODS: The cytotoxicity of CEAA against breast adenocarcinoma cells (4T1 and MCF-7) was evaluated by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Morphological and biochemical changes were detected by Hoechst 33342/propidium iodide (PI) and annexin V/PI staining. Cytosolic calcium mobilization was evaluated in cells staining with FURA-4NW. Immunoblotting was used to determine the effect of CEAA on anti- and pro-apoptotic proteins (Bcl-2 and Bax, respectively). The 4T1 cell-challenged mice were used for in vivo assay. RESULTS: Using ultra-high-performance liquid chromatography-mass spectrometry analysis, angelicin, a constituent of the roots and leaves of A. archangelica, was found to be the major constituent of the CEAA evaluated in this study (73 µg/mL). The CEAA was cytotoxic for both breast cancer cell lines studied but not for human fibroblasts. Treatment of 4T1 cells with the CEAA increased Bax protein levels accompanied by decreased Bcl-2 expression, in the presence of cleaved caspase-3 and cytosolic calcium mobilization, suggesting mitochondrial involvement in breast cancer cell death induced by the CEAA in this cell line. No changes on the Bcl-2/Bax ratio were observed in CEAA-treated MCF7 cells. Gavage administration of the CEAA (500 mg/kg) to 4T1 cell-challenged mice significantly decreased tumor growth when compared with untreated animals. CONCLUSION: Altogether, our data show the antitumor potential of the CEAA against breast cancer cells in vitro and in vivo. Further research is necessary to better elucidate the pharmacological application of the CEAA in breast cancer therapy.


Subject(s)
Angelica archangelica/chemistry , Antineoplastic Agents, Phytogenic/administration & dosage , Breast Neoplasms/drug therapy , Plant Extracts/administration & dosage , Animals , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/physiopathology , Caspase 3/genetics , Caspase 3/metabolism , Cell Proliferation/drug effects , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Plant Extracts/chemistry , Rhizome/chemistry , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
6.
Front Microbiol ; 9: 1427, 2018.
Article in English | MEDLINE | ID: mdl-30018604

ABSTRACT

The present study focused on the activity of the palladacycle complex DPPE 1.1 on Leishmania (Leishmania) amazonensis. Promastigotes of L. (L.) amazonensis were destroyed in vitro by nanomolar concentrations of DPPE 1.1, whereas intracellular amastigotes were killed at drug concentrations fivefold less toxic than those harmful to macrophages. L. (L.) amazonensis-infected BALB/c mice were treated by intralesional injection of DPPE 1.1. Animals treated with 3.5 and 7.0 mg/kg of DPPE 1.1 showed a significant decrease of foot lesion sizes and a parasite load reduction of 93 and 99%, respectively, when compared to untreated controls. Furthermore, DPPE 1.1 was non-toxic to treated animals. The cathepsin B activity of L. (L.) amazonensis amastigotes was inhibited by DPPE 1.1 as demonstrated spectrofluorometrically by use of a specific fluorogenic substrate. Analysis of T-cells populations in mice treated with DPPE 1.1 and untreated controls was performed by fluorescence-activated cell sorter (FACS). IFN-γ was measured in supernatants of lymphocytes from popliteal and inguinal lymph nodes isolated from treated and untreated mice and stimulated with L. (L.) amazonensis amastigotes extract and active TGF-ß was evaluated in supernatants of foot lesions; both dosages were carried out by means of a double-sandwich ELISA assay. A significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion was displayed in mice treated with DPPE 1.1 compared to untreated animals, whereas a significant reduction of active TGF-ß was observed in treated mice. These findings open perspectives for further investment in DPPE 1.1 as an alternative option for the chemotherapy of cutaneous leishmaniasis.

7.
Front Microbiol ; 8: 333, 2017.
Article in English | MEDLINE | ID: mdl-28321209

ABSTRACT

Palladacycle complex DPPE 1.2 was previously reported to inhibit the in vitro and in vivo infection by Leishmania (Leishmania) amazonensis. The aim of the present study was to compare the effect of DPPE 1.2, in association with heat-killed Propionibacterium acnes, on L. (L.) amazonensis infection in two mouse strains, BALB/c and C57BL/6, and to evaluate the immune responses of the treated animals. Foot lesions of L. (L.) amazonensis-infected mice were injected with DPPE 1.2 alone, or associated with P. acnes as an adjuvant. Analysis of T-cell populations in the treated mice and in untreated controls was performed by FACS. Detection of IFN-γ-secreting lymphocytes was carried out by an ELISPOT assay and active TGF-ß was measured by means of a double-sandwich ELISA test. The treatment with DPPE 1.2 resulted in a significant reduction of foot lesion sizes and parasite burdens in both mouse strains, and the lowest parasite burden was found in mice treated with DPPE 1.2 plus P. acnes. Mice treated with DPPE 1.2 alone displayed a significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion which were significantly higher in animals treated with DPPE 1.2 plus P. acnes. A significant reduction of active TGF-ß was observed in mice treated with DPPE 1.2 alone or associated with P. acnes. Moreover, DPPE 1.2 associated to P. acnes was non-toxic to treated animals. The destruction of L. (L.) amazonensis by DPPE 1.2 was followed by host inflammatory responses which were exacerbated when the palladacycle complex was associated with P. acnes.

8.
Front Microbiol ; 8: 771, 2017.
Article in English | MEDLINE | ID: mdl-28515716

ABSTRACT

Vulvovaginal and invasive candidiasis are frequent conditions in immunosuppressed individuals caused by Candida albicans and non-albicans Candida spp. Fluconazole and Amphotericin B are the main drugs used to fight the infection. However, resistance to fluconazole and other azole antifungal drugs is an important clinical problem that encourages the search for new therapeutic alternatives. In this work, we evaluate the antifungal activity of the biphosphinic cyclopalladate C7a in the in vitro and in vivo model. Our results showed fungicidal activity, with low values of minimal inhibitory concentrations and minimum fungicidal concentrations, even for fluconazole and/or miconazole resistant Candida isolates. Fluorescence microscopy and transmission electron microscopy revealed that the compound was able to inhibit the formation of hyphae/pseudohyphae and, moreover, promoted morphological alterations in cellular organelles and structures, such as disruption of cell wall, apparent mitochondrial swelling, chromatin marginalization into the nuclei and increased numbers of electron-lucent vacuoles. C7a significantly decreased the biofilm formation and reduced the viability of yeast cells in mature biofilms when tested against a virulent C. albicans strain. In vivo assays demonstrated a significant decrease of fungal burden in local (vaginal canal) and disseminated (kidneys) infection. In addition, we observed a significant increase in the survival of the systemically infected animals treated with C7a. Our results suggest C7a as a novel therapeutic agent for vaginal and disseminated candidiasis, and an alternative for conventional drug-resistant Candida.

9.
Biomed Pharmacother ; 92: 1045-1054, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28618649

ABSTRACT

To evaluate the antitumor properties of Cafestol four leukemia cell lines were used (NB4, K562, HL60 and KG1). Cafestol exhibited the highest cytotoxicity against HL60 and KG1 cells, as evidenced by the accumulation of cells in the sub-G1 fraction, mitochondrial membrane potential reduction, accumulation of cleaved caspase-3 and phosphatidylserine externalization. An increase in CD11b and CD15 differentiation markers with attenuated ROS generation was also observed in Cafestol-treated HL60 cells. These results were similar to those obtained following exposure of the same cell line to cytarabine (Ara-C), an antileukemic drug. Cafestol and Ara-C reduced the clonogenic potential of HL60 cells by 100%, but Cafestol spared murine colony forming unit- granulocyte/macrophage (CFU-GM), which retained their clonogenicity. The co-treatment of Cafestol and Ara-C reduced HL60 cell viability compared with both drugs administered alone. In conclusion, despite the distinct molecular mechanisms involved in the activity of Cafestol and Ara-C, a similar cytotoxicity towards leukemia cells was observed, which suggests a need for prophylactic-therapeutic pre-clinical studies regarding the anticancer properties of Cafestol.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Coffea/chemistry , Diterpenes/pharmacology , Leukemia/drug therapy , Animals , Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , CD11b Antigen/metabolism , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytarabine/pharmacology , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Fucosyltransferases/metabolism , HL-60 Cells , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , K562 Cells , Leukemia/metabolism , Leukemia/pathology , Lewis X Antigen/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Phosphatidylserines/metabolism , Phytotherapy , Plants, Medicinal , Reactive Oxygen Species/metabolism
10.
Eur J Med Chem ; 107: 245-54, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26599531

ABSTRACT

Recently, palladium complexes have been extensively studied as cyclization of these complexes by cyclometallation reactions increased their stability making them promising antitumor compounds. In this study, we have investigated apoptosis induced by the Biphosphinic Paladacycle Complex (BPC11) and possible cross talk between apoptosis and autophagy in cell line models of metastatic (Tm5) and non-metastatic (4C11-) melanoma. The BPC11-induced cell death in melanoma involved the lysosomal-mitochondrial axis, which is characterized by LMP, CatB activation and increased Bax protein levels following its translocation to mitochondria. Mitochondrial hyperpolarization, followed by membrane potential dissipation and cleavage of caspase-3, also resulted in cell death after 24 h of incubation. We also found that BPC11-mediated LC3II formation and increased p62 protein levels, suggesting blocked autophagy, probably due to LMP. Interestingly, the treatment of Tm5 and 4C11(-) cells with 3-methyladenine (3-MA), an inhibitor of the initial stage of autophagy, potentiated the effects of BPC11. We conclude that BPC11 is an anti-melanoma agent and that autophagy may be acting as a mechanism of melanoma cells resistance. Also, these data highlight the importance of studies involving autophagy and apoptosis during pre-clinical studies of new drugs with anticancer properties.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Ferrous Compounds/pharmacology , Melanoma, Experimental/drug therapy , Organometallic Compounds/pharmacology , Organophosphorus Compounds/pharmacology , Palladium/chemistry , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Ferrous Compounds/chemistry , Lysosomes/drug effects , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Organometallic Compounds/chemistry , Organophosphorus Compounds/chemistry , Phosphines/chemistry , Protein Transport/drug effects , bcl-2-Associated X Protein/metabolism
11.
Eur J Med Chem ; 79: 24-33, 2014 May 22.
Article in English | MEDLINE | ID: mdl-24709226

ABSTRACT

The search for new compounds that induce p53-independent apoptosis is the focus of many studies in cancer biology because these compounds could be more specific and would overcome chemotherapy resistance. In this study, we evaluated the in vitro antitumour activity of a Biphosphinic Palladacycle Complex (BPC) and extended preclinical studies to an in vivo model. Saos-2 cells, a p53-null human osteosarcoma drug-resistant cell line, were treated with BPC in the presence or absence of a cathepsin B inhibitor and a calcium chelator (CA074 and BAPTA-AM, respectively), and several parameters related to apoptosis were evaluated. Preclinical studies were performed with mice that were intravenously inoculated with murine melanoma B16F10-Nex2 cells and treated intraperitoneally (i.p.) with BPC (8 mg/kg/day) for ten consecutive days, when lung metastatic nodules were counted. In vitro data show that BPC induces cell death in Saos-2 cells mainly by apoptosis, which was accompanied by the effector caspase-3 activation. These events are most likely related to Bax translocation and increased cytosolic calcium mobilisation, mainly from intracellular compartments. Lysosomal Membrane Permeabilisation (LMP) was also observed after 12 h of BPC exposure. Interestingly, BAPTA-AM and CA074 significantly decreased BPC cytotoxicity, suggesting that both calcium and cathepsin B are required for BPC antitumour activity. In vivo studies demonstrated that BPC protects mice against murine metastatic melanoma. In conclusion, BPC complex is an effective anticancer compound against metastatic murine melanoma. This complex is cytotoxic to the drug-resistant osteosarcoma Saos-2 human tumour cells by inducing apoptosis triggered by calcium signalling and a lysosomal-dependent pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Calcium/metabolism , Cathepsin B/metabolism , Cytosol/metabolism , Neoplasms, Experimental/drug therapy , Organometallic Compounds/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Activation/drug effects , Humans , Injections, Intraperitoneal , Lysosomes/metabolism , Mice , Molecular Structure , Neoplasms, Experimental/pathology , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL