Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555377

ABSTRACT

Accumulating evidences suggest a strong correlation between metabolic changes and neurodegeneration in CNS demyelinating diseases such as multiple sclerosis (MS). Biotin, an essential cofactor for five carboxylases, is expressed by oligodendrocytes and involved in fatty acid synthesis and energy production. The metabolic effect of biotin or high-dose-biotin (MD1003) has been reported on rodent oligodendrocytes in vitro, and in neurodegenerative or demyelinating animal models. However, clinical studies, showed mild or no beneficial effect of MD1003 in amyotrophic lateral sclerosis (ALS) or MS. Here, we took advantage of a mouse model of myelin deficiency to study the effects of MD1003 on the behavior of murine and grafted human oligodendrocytes in vivo. We show that MD1003 increases the number and the differentiation potential of endogenous murine oligodendroglia over time. Moreover, the levels of MD1003 are increased in the plasma and brain of pups born to treated mothers, indicating that MD1003 can pass through the mother's milk. The histological analysis of the grafted animals shows that MD1003 increased proliferation and accelerates differentiation of human oligodendroglia, but without enhancing their myelination potential. These findings provide important insights into the role of MD1003 on murine and human oligodendrocyte maturation/myelination that may explain the mitigated outcome of ALS/MS clinical trials.


Subject(s)
Amyotrophic Lateral Sclerosis , Biotin , Multiple Sclerosis , Oligodendrocyte Precursor Cells , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/metabolism , Biotin/pharmacology , Cell Differentiation , Multiple Sclerosis/metabolism , Myelin Sheath , Oligodendroglia/metabolism
2.
Glia ; 68(10): 1945-1956, 2020 10.
Article in English | MEDLINE | ID: mdl-32027054

ABSTRACT

The presence of peripheral myelinating cells in the central nervous system (CNS) has gained the neurobiologist attention over the years. Despite the confirmed presence of Schwann cells in the CNS in pathological conditions, and the long list of their beneficial effects on central remyelination, the cues that impede or allow Schwann cells to successfully conquer and remyelinate central axons remain partially undiscovered. A better knowledge of these factors stands out as crucial to foresee a rational therapeutic approach for the use of Schwann cells in CNS repair. Here, we review the diverse origins of Schwann cells into the CNS, both peripheral and central, as well as the CNS components that inhibit Schwann survival and migration into the central parenchyma. Namely, we analyze the astrocyte- and the myelin-derived components that restrict Schwann cells into the CNS. Finally, we highlight the unveiled mode of invasion of these peripheral cells through the central environment, using blood vessels as scaffolds to pave their ways toward demyelinated lesions. In short, this review presents the so far uncovered knowledge of this complex CNS-peripheral nervous system (PNS) relationship.


Subject(s)
Cell Movement/physiology , Demyelinating Diseases/metabolism , Myelin Sheath/metabolism , Remyelination/physiology , Schwann Cells/metabolism , Animals , Cell Survival/physiology , Central Nervous System/metabolism , Central Nervous System/pathology , Demyelinating Diseases/pathology , Humans , Peripheral Nervous System/metabolism , Peripheral Nervous System/pathology
3.
Acta Neuropathol ; 138(3): 457-476, 2019 09.
Article in English | MEDLINE | ID: mdl-31011859

ABSTRACT

Schwann cells (SC) enter the central nervous system (CNS) in pathophysiological conditions. However, how SC invade the CNS to remyelinate central axons remains undetermined. We studied SC migratory behavior ex vivo and in vivo after exogenous transplantation in the demyelinated spinal cord. The data highlight for the first time that SC migrate preferentially along blood vessels in perivascular extracellular matrix (ECM), avoiding CNS myelin. We demonstrate in vitro and in vivo that this migration route occurs by virtue of a dual mode of action of Eph/ephrin signaling. Indeed, EphrinB3, enriched in myelin, interacts with SC Eph receptors, to drive SC away from CNS myelin, and triggers their preferential adhesion to ECM components, such as fibronectin via integrinß1 interactions. This complex interplay enhances SC migration along the blood vessel network and together with lesion-induced vascular remodeling facilitates their timely invasion of the lesion site. These novel findings elucidate the mechanism by which SC invade and contribute to spinal cord repair.


Subject(s)
Blood Vessels , Cell Movement/physiology , Ephrin-B3/metabolism , Remyelination/physiology , Schwann Cells/physiology , Spinal Cord/metabolism , Animals , Demyelinating Diseases/pathology , Female , Fibronectins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction/physiology , Spinal Cord/pathology
4.
Ann Neurol ; 81(5): 641-652, 2017 May.
Article in English | MEDLINE | ID: mdl-28318037

ABSTRACT

OBJECTIVE: Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2-/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. METHODS: To test these hypotheses, we assessed two therapies in Tk2-/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. RESULTS: We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2-/- animals compared to dCMP+dTMP. INTERPRETATION: Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652.


Subject(s)
Antimetabolites/pharmacology , Deoxycytidine Monophosphate/pharmacology , Metabolism, Inborn Errors/drug therapy , Mitochondrial Diseases/drug therapy , Tetrahydrouridine/pharmacology , Thymidine Kinase/deficiency , Thymidine/pharmacology , Animals , Antimetabolites/administration & dosage , DNA, Mitochondrial/drug effects , Deoxycytidine Monophosphate/administration & dosage , Disease Models, Animal , Drug Therapy, Combination , Metabolism, Inborn Errors/enzymology , Mice , Mice, Transgenic , Mitochondrial Diseases/enzymology , Tetrahydrouridine/administration & dosage , Thymidine/administration & dosage
5.
Hum Mol Genet ; 24(16): 4516-29, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25976310

ABSTRACT

Ataxia oculomotor apraxia type 1 (AOA1) is an autosomal recessive disease caused by mutations in APTX, which encodes the DNA strand-break repair protein aprataxin (APTX). CoQ10 deficiency has been identified in fibroblasts and muscle of AOA1 patients carrying the common W279X mutation, and aprataxin has been localized to mitochondria in neuroblastoma cells, where it enhances preservation of mitochondrial function. In this study, we show that aprataxin deficiency impairs mitochondrial function, independent of its role in mitochondrial DNA repair. The bioenergetics defect in AOA1-mutant fibroblasts and APTX-depleted Hela cells is caused by decreased expression of SDHA and genes encoding CoQ biosynthetic enzymes, in association with reductions of APE1, NRF1 and NRF2. The biochemical and molecular abnormalities in APTX-depleted cells are recapitulated by knockdown of APE1 in Hela cells and are rescued by overexpression of NRF1/2. Importantly, pharmacological upregulation of NRF1 alone by 5-aminoimidazone-4-carboxamide ribonucleotide does not rescue the phenotype, which, in contrast, is reversed by the upregulation of NRF2 by rosiglitazone. Accordingly, we propose that the lack of aprataxin causes reduction of the pathway APE1/NRF1/NRF2 and their target genes. Our findings demonstrate a critical role of APTX in transcription regulation of mitochondrial function and the pathogenesis of AOA1 via a novel pathomechanistic pathway, which may be relevant to other neurodegenerative diseases.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/biosynthesis , DNA-Binding Proteins/deficiency , Down-Regulation , Fibroblasts/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 2/biosynthesis , Nuclear Proteins/deficiency , Nuclear Respiratory Factor 1/biosynthesis , Signal Transduction , Ataxia/genetics , Ataxia/metabolism , Ataxia/pathology , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-Binding Proteins/genetics , Female , Fibroblasts/pathology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Humans , Male , Mitochondria/pathology , NF-E2-Related Factor 2/genetics , Nuclear Proteins/genetics , Nuclear Respiratory Factor 1/genetics
6.
Hum Mol Genet ; 24(3): 714-26, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25274776

ABSTRACT

A member of the four-and-a-half-LIM (FHL) domain protein family, FHL1, is highly expressed in human adult skeletal and cardiac muscle. Mutations in FHL1 have been associated with diverse X-linked muscle diseases: scapuloperoneal (SP) myopathy, reducing body myopathy, X-linked myopathy with postural muscle atrophy, rigid spine syndrome (RSS) and Emery-Dreifuss muscular dystrophy. In 2008, we identified a missense mutation in the second LIM domain of FHL1 (c.365 G>C, p.W122S) in a family with SP myopathy. We generated a knock-in mouse model harboring the c.365 G>C Fhl1 mutation and investigated the effects of this mutation at three time points (3-5 months, 7-10 months and 18-20 months) in hemizygous male and heterozygous female mice. Survival was comparable in mutant and wild-type animals. We observed decreased forelimb strength and exercise capacity in adult hemizygous male mice starting from 7 to 10 months of age. Western blot analysis showed absence of Fhl1 in muscle at later stages. Thus, adult hemizygous male, but not heterozygous female, mice showed a slowly progressive phenotype similar to human patients with late-onset muscle weakness. In contrast to SP myopathy patients with the FHL1 W122S mutation, mutant mice did not manifest cytoplasmic inclusions (reducing bodies) in muscle. Because muscle weakness was evident prior to loss of Fhl1 protein and without reducing bodies, our findings indicate that loss of function is responsible for the myopathy in the Fhl1 W122S knock-in mice.


Subject(s)
Forelimb/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Emery-Dreifuss/pathology , Myocardium/pathology , Age of Onset , Animals , Disease Models, Animal , Female , Gene Knock-In Techniques , Hemizygote , Heterozygote , Humans , Male , Mice , Mice, Inbred C57BL , Muscular Dystrophy, Emery-Dreifuss/epidemiology , Muscular Dystrophy, Emery-Dreifuss/genetics , Muscular Dystrophy, Emery-Dreifuss/metabolism , Mutation, Missense
7.
Biochim Biophys Acta ; 1848(11 Pt B): 3032-46, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25838125

ABSTRACT

Lysozymes play an important role in host defense by degrading peptidoglycan in the cell envelopes of pathogenic bacteria. Several Gram-negative bacteria can evade this mechanism by producing periplasmic proteins that inhibit the enzymatic activity of lysozyme. The Escherichia coli inhibitor of vertebrate lysozyme, Ivyc and its Pseudomonas aeruginosa homolog, Ivyp1 have been shown to be potent inhibitors of hen egg white lysozyme (HEWL). Since human lysozyme (HL) plays an important role in the innate immune response, we have examined the binding of HL to Ivyc and Ivyp1. Our results show that Ivyp1 is a weaker inhibitor of HL than Ivyc even though they inhibit HEWL with similar potency. Calorimetry experiments confirm that Ivyp1 interacts more weakly with HL than HEWL. Analytical ultracentrifugation studies revealed that Ivyp1 in solution is a monomer and forms a 30kDa heterodimer with both HL and HEWL, while Ivyc is a homodimer that forms a tetramer with both enzymes. The interaction of Ivyp1 with HL was further characterized by NMR chemical shift perturbation experiments. In addition to the characteristic His-containing Ivy inhibitory loop that binds into the active site of lysozyme, an extended loop (P2) between the final two beta-strands also participates in forming protein-protein interactions. The P2 loop is not conserved in Ivyc and it constitutes a flexible region in Ivyp1 that becomes more rigid in the complex with HL. We conclude that differences in the electrostatic interactions at the binding interface between Ivy inhibitors and distinct lysozymes determine the strength of this interaction. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.


Subject(s)
Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Muramidase/metabolism , Pseudomonas aeruginosa/metabolism , Binding Sites , Calorimetry, Differential Scanning , Carrier Proteins/chemistry , Carrier Proteins/immunology , Escherichia coli/immunology , Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/immunology , Host-Pathogen Interactions , Humans , Immunity, Innate , Models, Molecular , Muramidase/antagonists & inhibitors , Muramidase/chemistry , Muramidase/immunology , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/pathogenicity , Static Electricity , Ultracentrifugation
8.
Am J Hum Genet ; 91(4): 729-36, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23022099

ABSTRACT

Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.


Subject(s)
Cell Cycle Proteins/genetics , Mitochondria/genetics , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Proteins/genetics , Mutation , Protein Biosynthesis , Consanguinity , DNA, Mitochondrial/genetics , Exons , Fibroblasts/metabolism , Genetic Predisposition to Disease , Homozygote , Humans , Infant, Newborn , Male , Mitochondrial Encephalomyopathies/metabolism , RNA Splice Sites/genetics , RNA Splicing/genetics , RNA, Messenger/genetics
9.
Brain ; 137(Pt 5): 1337-49, 2014 May.
Article in English | MEDLINE | ID: mdl-24727567

ABSTRACT

Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches.


Subject(s)
Deoxyribonucleosides/adverse effects , Intestinal Pseudo-Obstruction/chemically induced , Intestinal Pseudo-Obstruction/genetics , Mitochondrial Encephalomyopathies/chemically induced , Mitochondrial Encephalomyopathies/genetics , Age Factors , Animals , Body Weight/drug effects , Body Weight/genetics , Brain/pathology , Deoxyribonucleosides/metabolism , Disease Models, Animal , Intestinal Pseudo-Obstruction/mortality , Intestinal Pseudo-Obstruction/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Diseases/etiology , Mitochondrial Diseases/genetics , Mitochondrial Encephalomyopathies/mortality , Mitochondrial Encephalomyopathies/physiopathology , Motor Activity/drug effects , Muscle Strength/drug effects , Muscle Strength/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophy, Oculopharyngeal , Ophthalmoplegia/congenital , Psychomotor Disorders/etiology , Psychomotor Disorders/genetics , Succinate Dehydrogenase/metabolism , Thymidine/adverse effects , Thymidine/metabolism , Thymidine Phosphorylase/deficiency , Uridine Phosphorylase/deficiency
10.
Stem Cell Reports ; 17(11): 2467-2483, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351367

ABSTRACT

The presence of putative stem/progenitor cells has been suggested in adult peripheral nervous system (PNS) tissue, including the dorsal root ganglion (DRG). To date, their identification and fate in pathophysiological conditions have not been addressed. Combining multiple in vitro and in vivo approaches, we identified the presence of stem cells in the adult DRG satellite glial population, and progenitors were present in the DRGs and sciatic nerve. Cell-specific transgenic mouse lines highlighted the proliferative potential of DRG stem cells and progenitors in vitro. DRG stem cells had gliogenic and neurogenic potentials, whereas progenitors were essentially gliogenic. Lineage tracing showed that, under physiological conditions, adult DRG stem cells maintained DRG homeostasis by supplying satellite glia. Under pathological conditions, adult DRG stem cells replaced DRG neurons lost to injury in addition of renewing the satellite glial pool. These novel findings open new avenues for development of therapeutic strategies targeting DRG stem cells for PNS disorders.


Subject(s)
Adult Stem Cells , Ganglia, Spinal , Mice , Animals , Neuroglia , Neurons , Stem Cells
11.
Mol Neurobiol ; 58(2): 470-482, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32974731

ABSTRACT

Multiple sclerosis (MS) is a neuroinflammatory disease whose pathogenesis remains unclear. Lysophosphatidic acid (LPA) is an endogenous phospholipid involved in multiple immune cell functions and dysregulated in MS. Its receptor LPA1 is expressed in macrophages and regulates their activation, which is of interest due to the role of macrophage activation in MS in both destruction and repair. In this study, we studied the genetic deletion and pharmaceutical inhibition of LPA1 in the mouse MS model, experimental autoimmune encephalomyelitis (EAE). LPA1 expression was analyzed in EAE mice and MS patient immune cells. The effect of LPA and LPA1 on macrophage activation was studied in human monocyte-derived macrophages. We show that lack of LPA1 activity induces milder clinical EAE course and that Lpar1 expression in peripheral blood mononuclear cells (PBMC) correlates with onset of relapses and severity in EAE. We see the same over-expression in PBMC from MS patients during relapse compared with progressive forms of the disease and in stimulated monocyte-derived macrophages. LPA induced a proinflammatory-like response in macrophages through LPA1, providing a plausible way in which LPA and LPA1 dysregulation can lead to the inflammation in MS. These data show a new mechanism of LPA signaling in the MS pathogenesis, prompting further research into its use as a therapeutic target biomarker.


Subject(s)
Lysophospholipids/metabolism , Macrophage Activation , Macrophages/metabolism , Multiple Sclerosis/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Adolescent , Adult , Aged , Animals , Cell Polarity , Central Nervous System/metabolism , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Inflammation/pathology , Mice, Inbred C57BL , Middle Aged , Monocytes/pathology , PPAR gamma/metabolism , Phenotype , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Recurrence , Young Adult
12.
Nat Protoc ; 15(11): 3716-3744, 2020 11.
Article in English | MEDLINE | ID: mdl-33097924

ABSTRACT

Oligodendrocytes (OLs) are responsible for myelin production and metabolic support of neurons. Defects in OLs are crucial in several neurodegenerative diseases including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). This protocol describes a method to generate oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells (hPSCs) in only ~20 d, which can subsequently myelinate neurons, both in vitro and in vivo. To date, OPCs have been derived from eight different hPSC lines including those derived from patients with spontaneous and familial forms of MS and ALS, respectively. hPSCs, fated for 8 d toward neural progenitors, are transduced with an inducible lentiviral vector encoding for SOX10. The addition of doxycycline for 10 d results in >60% of cells being O4-expressing OPCs, of which 20% co-express the mature OL marker myelin basic protein (MBP). The protocol also describes an alternative for viral transduction, by incorporating an inducible SOX10 in the safe harbor locus AAVS1, yielding ~100% pure OPCs. O4+ OPCs can be purified and either cryopreserved or used for functional studies. As an example of the type of functional study for which the derived cells could be used, O4+ cells can be co-cultured with maturing hPSC-derived neurons in 96/384-well-format plates, allowing the screening of pro-myelinating compounds.


Subject(s)
Myelin Sheath/metabolism , Neural Stem Cells/cytology , Neurogenesis , Oligodendroglia/cytology , Pluripotent Stem Cells/cytology , Cell Culture Techniques/methods , Cell Line , Humans , Myelin Basic Protein/analysis , Myelin Basic Protein/metabolism , Neural Stem Cells/metabolism , Oligodendroglia/metabolism , Pluripotent Stem Cells/metabolism
13.
Sci Adv ; 6(49)2020 12.
Article in English | MEDLINE | ID: mdl-33277253

ABSTRACT

Remyelination failure in multiple sclerosis (MS) is associated with a migration/differentiation block of oligodendroglia. The reason for this block is highly debated. It could result from disease-related extrinsic or intrinsic regulators in oligodendroglial biology. To avoid confounding immune-mediated extrinsic effect, we used an immune-deficient mouse model to compare induced pluripotent stem cell-derived oligodendroglia from MS and healthy donors following engraftment in the developing CNS. We show that the MS-progeny behaves and differentiates into oligodendrocytes to the same extent as controls. They generate equal amounts of myelin, with bona fide nodes of Ranvier, and promote equal restoration of their host slow conduction. MS-progeny expressed oligodendrocyte- and astrocyte-specific connexins and established functional connections with donor and host glia. Thus, MS oligodendroglia, regardless of major immune manipulators, are intrinsically capable of myelination and making functional axo-glia/glia-glia connections, reinforcing the view that the MS oligodendrocyte differentiation block is not from major intrinsic oligodendroglial deficits.

14.
Mol Cell Neurosci ; 39(3): 342-55, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18708146

ABSTRACT

Neurogenesis persists in certain regions of the adult brain including the subgranular zone of the hippocampal dentate gyrus wherein its regulation is essential, particularly in relation to learning, stress and modulation of mood. Lysophosphatidic acid (LPA) is an extracellular signaling phospholipid with important neural regulatory properties mediated by specific G protein-coupled receptors, LPA(1-5). LPA(1) is highly expressed in the developing neurogenic ventricular zone wherein it is required for normal embryonic neurogenesis, and, by extension may play a role in adult neurogenesis as well. By means of the analyses of a variant of the original LPA(1)-null mutant mouse, termed the Malaga variant or "maLPA(1)-null," which has recently been reported to have defective neurogenesis within the embryonic cerebral cortex, we report here a role for LPA(1) in adult hippocampal neurogenesis. Proliferation, differentiation and survival of newly formed neurons are defective in the absence of LPA(1) under normal conditions and following exposure to enriched environment and voluntary exercise. Furthermore, analysis of trophic factors in maLPA(1)-null mice demonstrated alterations in brain-derived neurotrophic factor and insulin growth factor 1 levels after enrichment and exercise. Morphological analyses of doublecortin positive cells revealed the anomalous prevalence of bipolar cells in the subgranular zone, supporting the operation of LPA(1) signaling pathways in normal proliferation, maturation and differentiation of neuronal precursors.


Subject(s)
Dentate Gyrus/physiology , Gene Deletion , Neurogenesis/physiology , Receptors, Lysophosphatidic Acid , Animals , Apoptosis/physiology , Behavior, Animal/physiology , Biomarkers/metabolism , Dentate Gyrus/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Neurons/cytology , Neurons/physiology , Random Allocation , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism
17.
FEBS Lett ; 581(16): 2894-8, 2007 Jun 26.
Article in English | MEDLINE | ID: mdl-17543955

ABSTRACT

Calpastatin is the endogenous, specific protein inhibitor of the calcium-dependent protease, calpain. Using an active site knock-out m-calpain mutant we have studied the enzyme's calcium-dependent binding to calpastatin by surface plasmon resonance without the complication of proteolysis. Calpastatin was capable of simultaneously binding four molecules of calpain. Its four inhibitory domains (CAST1, 2, 3, and 4) were individually expressed in Escherichia coli and the kinetics of their interaction with calpain was separately compared. Their K(d) values ranged from picomolar to nanomolar in the order CAST1>4>3>2. They have similar k(on) values but the k(off) values ranged over three orders of magnitude and can account for the differences in affinity.


Subject(s)
Calcium-Binding Proteins/metabolism , Calpain/metabolism , Animals , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/isolation & purification , In Vitro Techniques , Kinetics , Models, Biological , Protein Binding , Protein Structure, Tertiary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
18.
Brain Struct Funct ; 220(6): 3701-20, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25226845

ABSTRACT

Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA(1-6)). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.


Subject(s)
Cell Differentiation , Cerebral Cortex/physiology , Myelin Sheath/physiology , Oligodendroglia/physiology , Receptors, Lysophosphatidic Acid/physiology , Animals , Apoptosis , Axons/ultrastructure , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Knockout , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Protein Transport , Receptors, Lysophosphatidic Acid/genetics
19.
EMBO Mol Med ; 6(8): 1016-27, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24968719

ABSTRACT

Autosomal recessive mutations in the thymidine kinase 2 gene (TK2) cause mitochondrial DNA depletion, multiple deletions, or both due to loss of TK2 enzyme activity and ensuing unbalanced deoxynucleotide triphosphate (dNTP) pools. To bypass Tk2 deficiency, we administered deoxycytidine and deoxythymidine monophosphates (dCMP+dTMP) to the Tk2 H126N (Tk2(-/-)) knock-in mouse model from postnatal day 4, when mutant mice are phenotypically normal, but biochemically affected. Assessment of 13-day-old Tk2(-/-) mice treated with dCMP+dTMP 200 mg/kg/day each (Tk2(-/-200dCMP/) (dTMP)) demonstrated that in mutant animals, the compounds raise dTTP concentrations, increase levels of mtDNA, ameliorate defects of mitochondrial respiratory chain enzymes, and significantly prolong their lifespan (34 days with treatment versus 13 days untreated). A second trial of dCMP+dTMP each at 400 mg/kg/day showed even greater phenotypic and biochemical improvements. In conclusion, dCMP/dTMP supplementation is the first effective pharmacologic treatment for Tk2 deficiency.


Subject(s)
Mitochondrial Diseases/drug therapy , Thymidine Kinase/deficiency , Thymidine Monophosphate/therapeutic use , Animals , Deoxycytidine Monophosphate/therapeutic use , Gene Knock-In Techniques , Mice , Survival Analysis , Treatment Outcome
20.
JAMA Neurol ; 70(9): 1177-9, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23836383

ABSTRACT

IMPORTANCE: Mendelian forms of complex I deficiency are usually associated with fatal infantile encephalomyopathy. Application of "MitoExome" sequencing (deep sequencing of the entire mitochondrial genome and the coding exons of >1000 nuclear genes encoding the mitochondrial proteome) allowed us to reveal an unusual clinical variant of complex I deficiency due to a novel homozygous mutation in ACAD9. The patient had an infantile-onset but slowly progressive encephalomyopathy and responded favorably to riboflavin therapy. OBSERVATION: A 13-year-old boy had exercise intolerance, weakness, and mild psychomotor delay. Muscle histochemistry showed mitochondrial proliferation, and biochemical analysis revealed severe complex I deficiency (15% of normal). The level of complex I holoprotein was reduced as determined by use of Western blot both in muscle (54%) and in fibroblasts (57%). CONCLUSIONS AND RELEVANCE: The clinical presentation of complex I deficiency due ACAD9 mutations spans from fatal infantile encephalocardiomyopathy to mild encephalomyopathy. Our data support the notion that ACAD9 functions as a complex I assembly protein. ACAD9 is a flavin adenine dinucleotide-containing flavoprotein, and treatment with riboflavin is advisable.


Subject(s)
Mitochondria/genetics , Mitochondrial Encephalomyopathies/genetics , Muscle, Skeletal/pathology , Mutation/genetics , Riboflavin/therapeutic use , Adolescent , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Genetic Predisposition to Disease , Homozygote , Humans , Male , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/drug therapy , Mitochondrial Encephalomyopathies/metabolism , Muscle, Skeletal/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL