Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microbiome ; 12(1): 29, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369490

ABSTRACT

BACKGROUND: Intestinal microbial composition not only affects the health of the gut but also influences centrally mediated systems involved in mood, through the "gut-brain" axis, a bidirectional communication between gut microbiota and the brain. In this context, the modulation of intestinal microbiota and its metabolites through the administration of probiotics seems to represent a very promising approach in the treatment of the central nervous system alterations. Early postnatal life is a critical period during which the brain undergoes profound and essential modulations in terms of maturation and plasticity. Maternal separation (MS), i.e., the disruption of the mother-pup interaction, represents a pivotal paradigm in the study of stress-related mood disorders, by inducing persistent changes in the immune system, inflammatory processes, and emotional behavior in adult mammals. RESULTS: We conducted experiments to investigate whether sustained consumption of a multi-strain probiotic formulation by adult male mice could mitigate the effects of maternal separation. Our data demonstrated that the treatment with probiotics was able to totally reverse the anxiety- and depressive-like behavior; normalize the neuro-inflammatory state, by restoring the resting state of microglia; and finally induce a proneurogenic effect. Mice subjected to maternal separation showed changes in microbiota composition compared to the control group that resulted in permissive colonization by the administered multi-strain probiotic product. As a consequence, the probiotic treatment also significantly affected the production of SCFA and in particular the level of butyrate. CONCLUSION: Gut microbiota and its metabolites mediate the therapeutic action of the probiotic mix on MS-induced brain dysfunctions. Our findings extend the knowledge on the use of probiotics as a therapeutic tool in the presence of alterations of the emotional sphere that significantly impact on gut microbiota composition. Video Abstract.


Subject(s)
Depression , Probiotics , Mice , Male , Animals , Depression/drug therapy , Maternal Deprivation , Anxiety/therapy , Brain , Probiotics/therapeutic use , Probiotics/pharmacology , Mammals
2.
Cell Rep Med ; 5(7): 101639, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959887

ABSTRACT

Environmental enteric dysfunction (EED) is a condition associated with malnutrition that can progress to malabsorption and villous atrophy. Severe EED results in linear growth stunting, slowed neurocognitive development, and unresponsiveness to oral vaccines. Prenatal exposure to malnutrition and breast feeding by malnourished mothers replicates EED. Pups are characterized by deprivation of secretory IgA (SIgA) and altered development of the gut immune system and microbiota. Extracellular ATP (eATP) released by microbiota limits T follicular helper (Tfh) cell activity and SIgA generation in Peyer's patches (PPs). Administration of a live biotherapeutic releasing the ATP-degrading enzyme apyrase to malnourished pups restores SIgA levels and ameliorates stunted growth. SIgA is instrumental in improving the growth and intestinal immune competence of mice while they are continuously fed a malnourished diet. The analysis of microbiota composition suggests that amplification of endogenous SIgA may exert a dominant function in correcting malnourishment dysbiosis and its consequences on host organisms, irrespective of the actual microbial ecology.


Subject(s)
Gastrointestinal Microbiome , Immunoglobulin A, Secretory , Malnutrition , Animals , Immunoglobulin A, Secretory/metabolism , Malnutrition/immunology , Mice , Female , Animals, Newborn , Humans , Apyrase/metabolism , Infant, Newborn
3.
Nutrients ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398877

ABSTRACT

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Subject(s)
Spirulina , Male , Mice , Animals , Spirulina/chemistry , Mice, Obese , Zinc , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal
4.
Gut Microbes ; 16(1): 2298246, 2024.
Article in English | MEDLINE | ID: mdl-38178601

ABSTRACT

Probiotics are exploited for adjuvant treatment in IBS, but reliable guidance for selecting the appropriate probiotic to adopt for different forms of IBS is lacking. We aimed to identify markers for recognizing non-constipated (NC) IBS patients that may show significant clinical improvements upon treatment with the probiotic strain Lacticaseibacillus paracasei DG (LDG). To this purpose, we performed a post-hoc analysis of samples collected during a multicenter, double-blind, parallel-group, placebo-controlled trial in which NC-IBS patients were randomized to receive at least 24 billion CFU LDG or placebo capsules b.i.d. for 12 weeks. The primary clinical endpoint was the composite response based on improved abdominal pain and fecal type. The fecal microbiome and serum markers of intestinal (PV1 and zonulin), liver, and kidney functions were investigated. We found that responders (R) in the probiotic arm (25%) differed from non-responders (NR) based on the abundance of 18 bacterial taxa, including the families Coriobacteriaceae, Dorea spp. and Collinsella aerofaciens, which were overrepresented in R patients. These taxa also distinguished R (but not NR) patients from healthy controls. Probiotic intervention significantly reduced the abundance of these bacteria in R, but not in NR. Analogous results emerged for C. aerofaciens from the analysis of data from a previous trial on IBS with the same probiotic. Finally, C. aerofaciens was positively correlated with the plasmalemmal vesicle associated protein-1 (PV-1) and the markers of liver function. In conclusion, LDG is effective on NC-IBS patients with NC-IBS with a greater abundance of potential pathobionts. Among these, C. aerofaciens has emerged as a potential predictor of probiotic efficacy.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Probiotics , Humans , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/microbiology , Treatment Outcome , Constipation , Probiotics/therapeutic use , Eubacterium , Double-Blind Method , Diarrhea/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL