Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Mammary Gland Biol Neoplasia ; 24(3): 245-256, 2019 09.
Article in English | MEDLINE | ID: mdl-31529195

ABSTRACT

Triple negative breast cancer (TNBC) is the most lethal breast cancer subtype. Extended periods of lactation protect against breast cancer development, but the mechanisms underlying this protection are unknown. We examined the effects of the milk protein alpha-casein over expression in the triple negative MDA-MB-231 breast cancer cell line. The effects of recombinant alpha-casein added exogenously to MDA-MB-231 breast cancer cells, and immortalised human fibroblasts were also investigated. We used transcriptional reporters to understand the signalling pathways downstream of alpha-casein in breast cancer cells and these fibroblasts that were activated by breast cancer cells. To extend our findings to the clinical setting, we analysed public gene expression datasets to further understand the relevance of these signalling pathways in triple negative breast cancer cells and patient samples. Finally, we used small molecular inhibitors to target relevant pathways and highlight these as potential candidates for the treatment of TN breast cancer. High levels of alpha-casein gene expression were predictive of good prognosis across 263 TNBC patient tumour samples. Alpha-casein over expression or exogenous addition reduces cancer stem cell (CSC) activity. HIF-1alpha was identified to be a key downstream target of alpha-casein, in both breast cancer cells and activated fibroblasts, and STAT transcription factors to be upstream of HIF-1alpha. Interestingly, HIF-1alpha is regulated by STAT3 in breast cancer cells, but STAT1 is the regulator of HIF-1alpha in activated fibroblasts. In analysis of 573 TNBC patient samples, alpha-casein expression, inversely correlated to HIF-1alpha, STAT3 and STAT1. STAT1 and STAT3 inhibitors target HIF-1alpha signalling in activated fibroblasts and MDA-MB-231 breast cancer cells respectively, and also abrogate CSC activities. Our findings provide an explanation for the protective effects of lactation in TNBC. Clinical data correlates high alpha-casein expression with increased recurrence-free survival in TNBC patients. Mechanistically, alpha-casein reduces breast cancer stem cell activity in vitro, and STAT3 and STAT1 were identified as regulators of pro-tumorigenic HIF-1alpha signalling in breast cancer cells and fibroblasts respectively.


Subject(s)
Biomarkers, Tumor/metabolism , Caseins/metabolism , Fibroblasts/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/metabolism , Triple Negative Breast Neoplasms/pathology , Biomarkers, Tumor/genetics , Caseins/genetics , Cell Proliferation , Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neoplastic Stem Cells/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Cells, Cultured
2.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36946995

ABSTRACT

Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.


Subject(s)
Cell Cycle Proteins , Cytoplasmic Dyneins , Dynactin Complex , Microtubule-Associated Proteins , Animals , Calcium/metabolism , Cytoplasmic Dyneins/genetics , Cytoplasmic Dyneins/metabolism , Dynactin Complex/genetics , Dynactin Complex/metabolism , Mammals/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Telomere/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
3.
iScience ; 24(2): 102069, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33554071

ABSTRACT

Glycolysis is a fundamental metabolic pathway for glucose catabolism across biology, and glycolytic enzymes are among the most abundant proteins in cells. Their expression at such levels provides a particular challenge. Here we demonstrate that the glycolytic mRNAs are localized to granules in yeast and human cells. Detailed live cell and smFISH studies in yeast show that the mRNAs are actively translated in granules, and this translation appears critical for the localization. Furthermore, this arrangement is likely to facilitate the higher level organization and control of the glycolytic pathway. Indeed, the degree of fermentation required by cells is intrinsically connected to the extent of mRNA localization to granules. On this basis, we term these granules, core fermentation (CoFe) granules; they appear to represent translation factories, allowing high-level coordinated enzyme synthesis for a critical metabolic pathway.

SELECTION OF CITATIONS
SEARCH DETAIL