Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217665

ABSTRACT

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/enzymology , Mutation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/metabolism
2.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37467750

ABSTRACT

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Subject(s)
Charcot-Marie-Tooth Disease , Neurodevelopmental Disorders , Animals , Humans , Mice , Cell Line , Charcot-Marie-Tooth Disease/genetics , DEAD-box RNA Helicases/genetics , Dichlorodiphenyl Dichloroethylene , DNA Helicases , Mammals , Neoplasm Proteins/genetics
3.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38154558

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Subject(s)
Embryonic Structures , Forkhead Transcription Factors , Kidney Diseases , Kidney , Nephrons , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Adult , Animals , Humans , Mice , Genome-Wide Association Study , Kidney/abnormalities , Kidney/embryology , Kidney Diseases/genetics , Mice, Knockout , Nephrons/embryology , Transcription Factors/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/metabolism
4.
Mamm Genome ; 34(2): 331-350, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36538124

ABSTRACT

Neuropsychiatric diseases (NPD) represent a significant global disease burden necessitating innovative approaches to pathogenic understanding, biomarker identification and therapeutic strategy. Emerging evidence implicates heart/brain axis malfunction in NPD etiology, particularly via the autonomic nervous system (ANS) and brain central autonomic network (CAN) interaction. This heart/brain inter-relationship harbors potentially novel NPD diagnosis and treatment avenues. Nevertheless, the lack of multidisciplinary clinical approaches as well as a limited appreciation of molecular underpinnings has stymied progress. Large-scale preclinical multi-systemic functional data can therefore provide supplementary insight into CAN and ANS interaction. We here present an overview of the heart/brain axis in NPD and establish a unique rationale for utilizing a preclinical cardiovascular disease risk gene set to glean insights into heart/brain axis control in NPD. With a top-down approach focusing on genes influencing electrocardiogram ANS function, we combined hierarchical clustering of corresponding regional CAN expression data and functional enrichment analysis to reveal known and novel molecular insights into CAN and NPD. Through 'support vector machine' inquiries for classification and literature validation, we further pinpointed the top 32 genes highly expressed in CAN brain structures altering both heart rate/heart rate variability (HRV) and behavior. Our observations underscore the potential of HRV/hyperactivity behavior as endophenotypes for multimodal disease biomarker identification to index aberrant executive brain functioning with relevance for NPD. This work heralds the potential of large-scale preclinical functional genetic data for understanding CAN/ANS control and introduces a stepwise design leveraging preclinical data to unearth novel heart/brain axis control genes in NPD.


Subject(s)
Heart Failure , Heart , Humans , Brain , Autonomic Nervous System/physiology , Biomarkers
5.
Mamm Genome ; 34(2): 244-261, 2023 06.
Article in English | MEDLINE | ID: mdl-37160609

ABSTRACT

Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.


Subject(s)
Rare Diseases , Mice , Animals , Humans , Mice, Knockout , Rare Diseases/genetics , Gene Knockout Techniques , Phenotype
6.
Mamm Genome ; 32(5): 332-349, 2021 10.
Article in English | MEDLINE | ID: mdl-34043061

ABSTRACT

Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.


Subject(s)
Carrier Proteins/genetics , Animals , Female , Male , Mice , Mice, Knockout , Phenotype
7.
Bioinformatics ; 36(5): 1492-1500, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31591642

ABSTRACT

MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce 'soft windowing', a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Population Health , Software , Animals , Genetic Association Studies , Humans , Mice , Phenotype
8.
PLoS Biol ; 16(4): e2005019, 2018 04.
Article in English | MEDLINE | ID: mdl-29659570

ABSTRACT

Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a "barren" regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions.


Subject(s)
Animal Welfare/ethics , Environment, Controlled , Nesting Behavior/physiology , Animal Welfare/economics , Animals , Energy Metabolism/physiology , Female , Heart Function Tests/methods , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Nociception/physiology
9.
Mamm Genome ; 31(1-2): 30-48, 2020 02.
Article in English | MEDLINE | ID: mdl-32060626

ABSTRACT

The collaborative cross (CC) is a large panel of mouse-inbred lines derived from eight founder strains (NOD/ShiLtJ, NZO/HILtJ, A/J, C57BL/6J, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Here, we performed a comprehensive and comparative phenotyping screening to identify phenotypic differences and similarities between the eight founder strains. In total, more than 300 parameters including allergy, behavior, cardiovascular, clinical blood chemistry, dysmorphology, bone and cartilage, energy metabolism, eye and vision, immunology, lung function, neurology, nociception, and pathology were analyzed; in most traits from sixteen females and sixteen males. We identified over 270 parameters that were significantly different between strains. This study highlights the value of the founder and CC strains for phenotype-genotype associations of many genetic traits that are highly relevant to human diseases. All data described here are publicly available from the mouse phenome database for analyses and downloads.


Subject(s)
Mice, Inbred Strains/genetics , Phenotype , Animals , Collaborative Cross Mice/genetics , Databases, Genetic , Female , Genetic Association Studies , Genotype , Male , Mice , Quantitative Trait Loci , Species Specificity
10.
EMBO Rep ; 18(11): 2015-2029, 2017 11.
Article in English | MEDLINE | ID: mdl-28893864

ABSTRACT

Lipopolysaccharide-responsive beige-like anchor protein (LRBA) belongs to the enigmatic class of BEACH domain-containing proteins, which have been attributed various cellular functions, typically involving intracellular protein and membrane transport processes. Here, we show that LRBA deficiency in mice leads to progressive sensorineural hearing loss. In LRBA knockout mice, inner and outer hair cell stereociliary bundles initially develop normally, but then partially degenerate during the second postnatal week. LRBA deficiency is associated with a reduced abundance of radixin and Nherf2, two adaptor proteins, which are important for the mechanical stability of the basal taper region of stereocilia. Our data suggest that due to the loss of structural integrity of the central parts of the hair bundle, the hair cell receptor potential is reduced, resulting in a loss of cochlear sensitivity and functional loss of the fraction of spiral ganglion neurons with low spontaneous firing rates. Clinical data obtained from two human patients with protein-truncating nonsense or frameshift mutations suggest that LRBA deficiency may likewise cause syndromic sensorineural hearing impairment in humans, albeit less severe than in our mouse model.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Hair Cells, Auditory/metabolism , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Phosphoproteins/genetics , Sodium-Hydrogen Exchangers/genetics , Stereocilia/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adult , Animals , Cytoskeletal Proteins/metabolism , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Gene Expression Regulation, Developmental , Hair Cells, Auditory/pathology , Hearing/physiology , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Phosphoproteins/metabolism , Protein Domains , Signal Transduction , Sodium-Hydrogen Exchangers/metabolism , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Stereocilia/pathology
11.
J Inherit Metab Dis ; 42(5): 839-849, 2019 09.
Article in English | MEDLINE | ID: mdl-31111503

ABSTRACT

Triosephosphate isomerase (TPI) deficiency is a fatal genetic disorder characterized by hemolytic anemia and neurological dysfunction. Although the enzyme defect in TPI was discovered in the 1960s, the exact etiology of the disease is still debated. Some aspects indicate the disease could be caused by insufficient enzyme activity, whereas other observations indicate it could be a protein misfolding disease with tissue-specific differences in TPI activity. We generated a mouse model in which exchange of a conserved catalytic amino acid residue (isoleucine to valine, Ile170Val) reduces TPI specific activity without affecting the stability of the protein dimer. TPIIle170Val/Ile170Val mice exhibit an approximately 85% reduction in TPI activity consistently across all examined tissues, which is a stronger average, but more consistent, activity decline than observed in patients or symptomatic mouse models that carry structural defect mutant alleles. While monitoring protein expression levels revealed no evidence for protein instability, metabolite quantification indicated that glycolysis is affected by the active site mutation. TPIIle170Val/Ile170Val mice develop normally and show none of the disease symptoms associated with TPI deficiency. Therefore, without the stability defect that affects TPI activity in a tissue-specific manner, a strong decline in TPI catalytic activity is not sufficient to explain the pathological onset of TPI deficiency.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/pathology , Carbohydrate Metabolism, Inborn Errors/pathology , Catalytic Domain/genetics , Triose-Phosphate Isomerase/deficiency , Triose-Phosphate Isomerase/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/enzymology , Animals , Behavior, Animal , Carbohydrate Metabolism, Inborn Errors/enzymology , Disease Models, Animal , Enzyme Stability , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Protein Multimerization
12.
Nucleic Acids Res ; 45(6): 3031-3045, 2017 04 07.
Article in English | MEDLINE | ID: mdl-27923998

ABSTRACT

An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Epigenesis, Genetic , HMGN Proteins/physiology , Histones/metabolism , Nerve Tissue Proteins/genetics , Oligodendroglia/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Embryonic Stem Cells/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , HMGN1 Protein/genetics , HMGN1 Protein/physiology , HMGN2 Protein/genetics , HMGN2 Protein/physiology , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Oligodendrocyte Transcription Factor 2
13.
EMBO J ; 33(18): 2020-39, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25063673

ABSTRACT

Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage.


Subject(s)
Gene Expression Regulation , Methyltransferases/metabolism , Nervous System Diseases/congenital , Nervous System Diseases/pathology , RNA, Transfer/metabolism , Animals , Brain/pathology , Gene Expression Profiling , Humans , Methylation , Methyltransferases/genetics , Mice , Oxidative Stress , Ribonuclease, Pancreatic/metabolism
14.
Biochem Biophys Res Commun ; 503(4): 2770-2777, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30100055

ABSTRACT

Heterozygous missense mutations in the human VCP gene cause inclusion body myopathy associated with Paget disease of bone and fronto-temporal dementia (IBMPFD) and amyotrophic lateral sclerosis (ALS). The exact molecular mechanisms by which VCP mutations cause disease manifestation in different tissues are incompletely understood. In the present study, we report the comprehensive analysis of a newly generated R155C VCP knock-in mouse model, which expresses the ortholog of the second most frequently occurring human pathogenic VCP mutation. Heterozygous R155C VCP knock-in mice showed decreased plasma lactate, serum albumin and total protein concentrations, platelet numbers, and liver to body weight ratios, and increased oxygen consumption and CD8+/Ly6C + T-cell fractions, but none of the typical human IBMPFD or ALS pathologies. Breeding of heterozygous mice did not yield in the generation of homozygous R155C VCP knock-in animals. Immunoblotting showed identical total VCP protein levels in human IBMPFD and murine R155C VCP knock-in tissues as compared to wild-type controls. However, while in human IBMPFD skeletal muscle tissue 70% of the total VCP mRNA was derived from the mutant allele, in R155C VCP knock-in mice only 5% and 7% mutant mRNA were detected in skeletal muscle and brain tissue, respectively. The lack of any obvious IBMPFD or ALS pathology could thus be a consequence of the very low expression of mutant VCP. We conclude that the increased and decreased fractions of the R155C mutant VCP mRNA in man and mice, respectively, are due to missense mutation-induced, divergent alterations in the biological half-life of the human and murine mutant mRNAs. Furthermore, our work suggests that therapy approaches lowering the expression of the mutant VCP mRNA below a critical threshold may ameliorate the intrinsic disease pathology.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Genes, Lethal , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Myositis, Inclusion Body/genetics , Osteitis Deformans/genetics , Valosin Containing Protein/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Brain/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Gene Expression Regulation , Gene Knock-In Techniques , Heterozygote , Humans , Male , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Myositis, Inclusion Body/metabolism , Myositis, Inclusion Body/pathology , Osteitis Deformans/metabolism , Osteitis Deformans/pathology , Signal Transduction , Species Specificity , Valosin Containing Protein/metabolism
15.
Radiat Environ Biophys ; 57(2): 99-113, 2018 05.
Article in English | MEDLINE | ID: mdl-29327260

ABSTRACT

Because of the increasing application of ionizing radiation in medicine, quantitative data on effects of low-dose radiation are needed to optimize radiation protection, particularly with respect to cataract development. Using mice as mammalian animal model, we applied a single dose of 0, 0.063, 0.125 and 0.5 Gy at 10 weeks of age, determined lens opacities for up to 2 years and compared it with overall survival, cytogenetic alterations and cancer development. The highest dose was significantly associated with increased body weight and reduced survival rate. Chromosomal aberrations in bone marrow cells showed a dose-dependent increase 12 months after irradiation. Pathological screening indicated a dose-dependent risk for several types of tumors. Scheimpflug imaging of the lens revealed a significant dose-dependent effect of 1% of lens opacity. Comparison of different biological end points demonstrated long-term effects of low-dose irradiation for several biological end points.


Subject(s)
Cataract/genetics , Radiation Injuries, Experimental/genetics , Animals , Cataract/etiology , Chromosome Aberrations/radiation effects , Dose-Response Relationship, Radiation , Female , Kaplan-Meier Estimate , Male , Mice , Radiation Injuries, Experimental/etiology , Radiation Protection , Risk Assessment , Telomere/radiation effects , Time Factors
16.
Genome Res ; 24(4): 592-603, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24642863

ABSTRACT

Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE). CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.


Subject(s)
Enhancer Elements, Genetic , Homeodomain Proteins/genetics , Neoplasm Proteins/genetics , Restless Legs Syndrome/genetics , Telencephalon/growth & development , Alleles , Animals , Basal Ganglia/metabolism , Basal Ganglia/pathology , Disease Models, Animal , Genome-Wide Association Study , Introns , Mice , Myeloid Ecotropic Viral Integration Site 1 Protein , Polymorphism, Single Nucleotide , Telencephalon/pathology
17.
Acta Neuropathol ; 134(2): 241-254, 2017 08.
Article in English | MEDLINE | ID: mdl-28409281

ABSTRACT

Translation of the expanded (ggggcc)n repeat in C9orf72 patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) causes abundant poly-GA inclusions. To elucidate their role in pathogenesis, we generated transgenic mice expressing codon-modified (GA)149 conjugated with cyan fluorescent protein (CFP). Transgenic mice progressively developed poly-GA inclusions predominantly in motoneurons and interneurons of the spinal cord and brain stem and in deep cerebellar nuclei. Poly-GA co-aggregated with p62, Rad23b and the newly identified Mlf2, in both mouse and patient samples. Consistent with the expression pattern, 4-month-old transgenic mice showed abnormal gait and progressive balance impairment, but showed normal hippocampus-dependent learning and memory. Apart from microglia activation we detected phosphorylated TDP-43 but no neuronal loss. Thus, poly-GA triggers behavioral deficits through inflammation and protein sequestration that likely contribute to the prodromal symptoms and disease progression of C9orf72 patients.


Subject(s)
C9orf72 Protein/genetics , Central Nervous System Diseases/physiopathology , DNA Repeat Expansion/genetics , Inclusion Bodies/pathology , Spinal Cord/pathology , Animals , Brain Stem/metabolism , Brain Stem/pathology , C9orf72 Protein/metabolism , Calcium-Binding Proteins/metabolism , Cytokines/metabolism , Embryo, Mammalian , Gene Expression Regulation/genetics , Hippocampus/cytology , Humans , Inclusion Bodies/genetics , Inflammation/genetics , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Neurons/pathology , Nuclear Proteins/metabolism , Psychomotor Performance
18.
J Biomed Sci ; 24(1): 57, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818080

ABSTRACT

BACKGROUND: Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically dominant mutant line HST014 was established and further analyzed. METHODS: Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant line was carried out. RESULTS: The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1) gene which leads to the amino acid exchange Kctd1 I27N thereby affecting the functional BTB domain of the protein. This line is the first mouse model harboring a Kctd1 mutation. Kctd1 I27N homozygous mutant mice die perinatally. Standardized, systemic phenotypic analysis of Kctd1 I27N heterozygous mutants was carried out in the German Mouse Clinic (GMC). Systematic morphological investigation of the external physical appearance did not detect the specific alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The main pathological phenotype of the Kctd1 I27N heterozygous mutant mice consists of kidney dysfunction and secondary effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs) in kidneys of Kctd1 I27N heterozygous mutants as compared to wild-type controls. CONCLUSIONS: In summary, the main alteration of the Kctd1 I27N heterozygous mutants consists in kidney dysfunction. Additional analyses in 9-21 week-old heterozygous mutants revealed only few minor effects.


Subject(s)
Co-Repressor Proteins/genetics , Disease Models, Animal , Kidney Diseases/genetics , Kidney/physiopathology , Mice , Mutation , Animals , Female , Male , Mice, Inbred C3H , Phenotype
19.
Mamm Genome ; 27(11-12): 587-598, 2016 12.
Article in English | MEDLINE | ID: mdl-27671791

ABSTRACT

Animal models resembling human mutations are valuable tools to research the features of complex human craniofacial syndromes. This is the first report on a viable dominant mouse model carrying a non-synonymous sequence variation within the endothelin receptor type A gene (Ednra c.386A>T, p.Tyr129Phe) derived by an ENU mutagenesis program. The identical amino acid substitution was reported recently as disease causing in three individuals with the mandibulofacial dysostosis with alopecia (MFDA, OMIM 616367) syndrome. We performed standardized phenotyping of wild-type, heterozygous, and homozygous Ednra Y129F mice within the German Mouse Clinic. Mutant mice mimic the craniofacial phenotypes of jaw dysplasia, micrognathia, dysplastic temporomandibular joints, auricular dysmorphism, and missing of the squamosal zygomatic process as described for MFDA-affected individuals. As observed in MFDA-affected individuals, mutant Ednra Y129F mice exhibit hearing impairment in line with strong abnormalities of the ossicles and further, reduction of some lung volumetric parameters. In general, heterozygous and homozygous mice demonstrated inter-individual diversity of expression of the craniofacial phenotypes as observed in MFDA patients but without showing any cleft palates, eyelid defects, or alopecia. Mutant Ednra Y129F mice represent a valuable viable model for complex human syndromes of the first and second pharyngeal arches and for further studies and analysis of impaired endothelin 1 (EDN1)-endothelin receptor type A (EDNRA) signaling. Above all, Ednra Y129F mice model the recently published human MFDA syndrome and may be helpful for further disease understanding and development of therapeutic interventions.


Subject(s)
Alopecia/genetics , Mandibulofacial Dysostosis/genetics , Receptor, Endothelin A/genetics , Alopecia/physiopathology , Animals , Genotype , Humans , Mandibulofacial Dysostosis/physiopathology , Mice , Mutation , Phenotype , Signal Transduction
20.
Int J Cancer ; 136(10): 2293-303, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25348795

ABSTRACT

Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.


Subject(s)
Cerebellar Neoplasms/pathology , Cerebellum/metabolism , Medulloblastoma/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Mice, Transgenic , Phenotype , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL