ABSTRACT
This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 µatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.
Subject(s)
Cephalopoda , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Mercury/analysis , Methylmercury Compounds/metabolism , Methylation , Cephalopoda/metabolism , Aquatic Organisms/metabolism , Water Pollutants, Chemical/analysisABSTRACT
Changes in the diversity of indigenous calcifying bacterial communities were determined before and after 1 year of biorepair treatment applied on indoor micro-cracked concrete walls. The biotreatment was based on the formation of an organo-mineral coating generated by Alkalihalobacillus pseudofirmus cultured in the presence of calcium lactate. Before and after the biotreatment, the calcifying bacterial strains belonging to either Firmicutes or Actinobacteria phylum were dominant depending on the sampling area. Nevertheless, the proportion of the calcifying Bacillus, Brachybacterium, Microbacterium, and Rhodococcus genera changed. These bacterial strains were likely to participate in the effectiveness of the biotreatment. Isolated bacteria of Microbacterium and Rhodococcus genera reported interesting calcifying capacity associated to microbial growth rates greater than the one observed for Alkalihalobacillus pseudofirmus. A bacterial consortium containing Alkalihalobacillus pseudofirmus, Rhodococcus cercidiphylli, and Microbacterium schleiferi demonstrated an improved calcifying capacity. Consequently, using a bacterial consortium instead of a single strain is an efficient way to improve the robustness of the biorepair treatment. KEY POINTS: ⢠Indigenous calcifying bacteria mainly belonged to Firmicutes and Actinobacteria ⢠Microbacterium and Rhodococcus reported the quickest growth rate with calcium lactate ⢠A bacterial consortium with improved calcifying capacity is proposed.
Subject(s)
Bacteria , Lactates , RNA, Ribosomal, 16S/genetics , Phylogeny , Bacteria/genetics , Firmicutes/geneticsABSTRACT
The sources and factors controlling concentrations of monomethylmercury (MMHg) in aquatic ecosystems need to be better understood. Here, we investigated Hg transformations in sediments, periphyton associated with green algae's or aquatic plants, and benthic biofilms from the Lake Titicaca hydrosystem and compared them to the occurrence of active methylating microorganisms and extracellular Hg ligands. Intense Hg methylation was found in benthic biofilms and green algae's periphyton, while it remained low in sediments and aquatic plants' periphyton. Demethylation varied between compartments but remained overall in the same range. Hg methylation was mainly carried out by sulfate reducers, although methanogens also played a role. Its variability between compartments was first explained by the presence or absence of the hgcAB genes. Next, both benthic biofilm and green algae's periphyton exhibited a great diversity of extracellular low-molecular-weight (LMW) thiols (13 or 14 compounds) present at a range of a few nmol L-1 or µmol L-1 but clearly dominated by cysteine and 3-mercaptopropionic acid. Hg methylation was overall positively correlated to the total thiol concentrations, albeit to different extents according to the compartment and conditions. This work is the first examining the interplay between active methylating bacterial communities and extracellular ligands in heterotrophic biofilms and supports the involvement of LMW thiols in Hg methylation in real aquatic systems.
Subject(s)
Mercury , Methylmercury Compounds , Periphyton , Water Pollutants, Chemical , Altitude , Biofilms , Ecosystem , Lakes , Methylation , Sulfhydryl CompoundsABSTRACT
Estuaries are highly dynamic ecosystems in which freshwater and seawater mix together. Depending on tide and river inflows, particles originating from rivers or from the remobilization of sediments accumulate in the water column. Due to the salinity gradient and the high heterotrophic activity in the estuarine plume, hypoxic and anoxic microniches may form in oxygenated waters, sustaining favorable conditions for resuspended anaerobic microorganisms. In this context, we tested the hypothesis that anaerobic sulfate-reducing prokaryotes may occur in the water column of the Adour River. Using 16S ribosomal RNA (rRNA) and dsrAB-based terminal restriction fragment length polymorphism (T-RFLP) techniques, we characterized total prokaryotic and sulfate-reducing communities along a gradient from estuarine to marine bay waters. Sulfate-reducing prokaryotes were further characterized by the description of dsrB genes and the cultivation of sulfidogenic anaerobic microorganisms. As a result, physical-chemical parameters had a significant effect on water bacterial diversity and community structure along the studied gradient. The concentration of cultured sulfidogenic microorganisms ranged from 1 to 60 × 103 cells l-1 in the water column. Sulfate-reducing prokaryotes occurring in estuarine waters were closely related to microorganisms previously detected in freshwater sediments, suggesting an estuarine origin, mainly by the remobilization of the sediments. In the marine bay station, sediment-derived sulfate-reducing prokaryotes were not cultured anymore, probably due to freshwater dilution, increasing salinity and extended oxic stress. Nevertheless, isolates related to the type strain Desulfovibrio oceani were cultured from the diluted plume and deep marine waters, indicating the occurrence of autochthonous sulfate-reducing bacteria offshore.
Subject(s)
Bays/microbiology , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Geologic Sediments/microbiology , Seawater/microbiology , Sulfates/metabolism , Biodiversity , Desulfovibrio/classification , Desulfovibrio/metabolism , Ecosystem , Estuaries , Fresh Water/microbiology , Oxidation-Reduction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , SalinityABSTRACT
Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).
Subject(s)
Hot Springs/microbiology , Microbiota , Sulfates/metabolism , Sulfur/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Mexico , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/geneticsABSTRACT
The response of archaeal community to oil spill with the combined effect of the bioturbation activity of the polychaetes Hediste diversicolor was determined in mudflat sediments from the Aber-Benoît basin (Brittany, French Atlantic coast), maintained in microcosms. The dynamics of the archaeal community was monitored by combining comparative terminal restriction fragment length polymorphism (T-RFLP) fingerprints and sequence library analyses based on 16S rRNA genes and 16S cDNA. Methanogens were also followed by targeting the mcrA gene. Crenarchaeota were always detected in all communities irrespective of the addition of H. diversicolor and/or oil. In the presence of oil, modifications of archaeal community structures were observed. These modifications were more pronounced when H. diversicolor was added resulting in a more diverse community especially for the Euryarchaeota and Thaumarchaeota. The analysis of mcrA transcripts showed a specific structure for each condition since the beginning of the experiment. Overall, oiled microcosms showed different communities irrespective of H. diversicolor addition, while similar hydrocarbon removal capacities were observed.
Subject(s)
Archaea/growth & development , Ecosystem , Geologic Sediments/chemistry , Microbial Consortia , Petroleum Pollution , Animals , Archaea/classification , Archaea/metabolism , DNA, Archaeal/genetics , France , Genes, Archaeal , Hydrocarbons/metabolism , Phylogeny , Polychaeta , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/geneticsABSTRACT
Molybdate inhibits sulfate respiration in sulfate-reducing bacteria (SRB). It is used as an inhibitor to indirectly evaluate the role of SRB in mercury methylation in the environment. Here, the SRB Pseudodesulfovibrio hydrargyri BerOc1 was used to assess the effect of molybdate on cell growth and mercury methylation under various metabolic conditions. Geobacter sulfurreducens PCA was used as the non-SRB counterpart strain with the ability to methylate mercury. While PCA growth and methylation are not affected by molybdate, 1 mM of molybdate inhibits BerOc1 growth under sulfate respiration (50% inhibition) but also under fumarate respiration (complete inhibition). Even more surprising, mercury methylation of BerOc1 is totally inhibited at 0.1 mM of molybdate when grown under sulfate or fumarate respiration with pyruvate as the electron donor. As molybdate is expected to reduce cellular ATP level, the lower Hg methylation observed with pyruvate could be the consequence of lower energy production. Although molybdate alters the expression of hgcA (mercury methylation marker) and sat (involved in sulfate reduction and molybdate sensitivity) in a metabolism-dependent manner, no relationship with mercury methylation rates could be found. Our results show, for the first time, a specific mercury methylation inhibition by molybdate in SRB.
Subject(s)
Mercury , Molybdenum , Molybdenum/pharmacology , Methylation , Geobacter/metabolismABSTRACT
Sulfidic hot springs harbor unique microbial communities and are important in mercury (Hg) species transformations, although the fine scale drivers of these processes remain poorly understood. Here we studied Hg speciation in water, biofilms, and sediment across three sampling seasons in a French sulfidic hot spring with low Hg concentrations. Microbial Hg species methylation and demethylation potentials were evaluated using incubation experiments with species-specific Hg isotope tracers. Temporal variation in inorganic Hg (iHg) and methylmercury (MeHg) concentrations in water, biofilm, and sediment was observed. The incubation of microbial communities in biofilms and sediment under dark conditions exhibited low iHg methylation potentials, whereas a significant extent of biotic MeHg demethylation to oxidized iHg was found in relation to MeHg concentrations. Results from microbial diversity (16S rDNA) and the metabolic inhibition experiments suggest an important role of sulfur-linked bacterial metabolism dynamics. Specifically, sulfate-reducers and anoxygenic phototrophs were important factors in the regulation of MeHg concentrations in our study site. Overall, the observed dominance of microbial MeHg demethylation demonstrates a strong Hg detoxification capacity in sulfidic aquatic environments.
ABSTRACT
Invasive macrophytes are a persistent environmental problem in aquatic ecosystems. They also cause potential health issues, since periphyton colonizing their aquatic roots are hot spot of mercury methylation. Because periphytons are at the base of the trophic chain, the produced methylmercury is bioamplified through the food webs. In this work, a consortia cultivation approach was applied in order to investigate methylators in the periphyton of Ludwigia sp., an invasive macrophyte. Five growth conditions were used in order to favor the growth of different sulfate reducers, the major mercury methylators in this periphyton. A total of 33 consortia containing putative Hg methylators were obtained. Based on the amino acid sequences of HgcA (essential enzyme for Hg methylation), the obtained consortia could be subdivided into five main clusters, affiliated with Desulfovibrionaceae, Desulfobulbaceae and Syntrophobacteraceae. The main cluster, related to Desulfovibrionaceae, showed the highest sequence diversity; notwithstanding most of the sequences of this cluster showed no close representatives. Through the consortia approach, species thus far uncultivated were cultivated. The successful cultivation of these species was probably possible through the metabolites produced by other members of the consortium. The analysis of the microbial composition of the consortia uncover certain microbial interactions that may exist within this complex environment.
Subject(s)
Bacteria , Lakes , Methylmercury Compounds , Onagraceae , Methylmercury Compounds/metabolism , Methylmercury Compounds/toxicity , Lakes/chemistry , Lakes/microbiology , Onagraceae/growth & development , Onagraceae/microbiology , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Periphyton , Phylogeny , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolismABSTRACT
Despite emerging contaminants (ECs) are more and more monitored in environmental matrices, there is still a lack of data in marine ecosystems, especially on their fate and degradation potentials. In this work, for the first time, the degradation potential of synthetic musks (galaxolide and tonalide), UV filters (padimate O and octocrylene) and a pharmaceutical compound (carbamazepine) was studied in marine sediment samples, under laboratory conditions using sediment slurry incubations under biotic and abiotic conditions. Minimum half life times under biotic conditions were found at 21 days, 129 days and 199 days for padimate O, galaxolide and carbamazepine, respectively. Enrichments conducted under anoxic and oxic conditions demonstrated that degradations after one month of incubation either under both biotic and abiotic conditions were limited under anoxic conditions compared to oxic conditions for all the contaminants. Novel aerobic bacteria, able to degrade synthetic musks and UV filters have been isolated. These novel strains were mainly related to the Genus Bacillus. Based on these results, the isolated strains able to degrade such ECs, can have a strong implication in the natural resilience in marine environment, and could be used in remediation processes.
Subject(s)
Ecosystem , Water Pollutants, Chemical , Bacteria , Geologic Sediments , Hydrophobic and Hydrophilic Interactions , Water Pollutants, Chemical/analysisABSTRACT
Microbial mercury (Hg) methylation transforms inorganic mercury to neurotoxic methylmercury (MeHg) mainly in aquatic anoxic environments. Sampling challenges in marine ecosystems, particularly in submarine canyons, leads to a lack of knowledge about the Hg methylating microbia in marine sediments. A previous study showed an enrichment of mercury species in sediments from the Capbreton Canyon where both geochemical parameters and microbial activities constrained the net MeHg production. In order to characterize Hg-methylating microbial communities from coastal to deeper sediments, we analysed the diversity of microorganisms' (16S rDNA-based sequencing) and Hg methylators (hgcA based cloning and sequencing). Both, 16S rDNA and hgcA gene analysis demonstrated that the putative Hg-methylating prokaryotes were likely within the Deltaproteobacteria, dominated by sulfur-compounds based reducing bacteria (mainly sulfate reducers). Additionally, others clades were also identified as carrying HgcA gene, such as, Chloroflexi, Spirochaetes, Elusimicrobia, PVC superphylum (Plantomycetes, Verrucomicrobia and Chlamydiae) and Euryarchaea. Nevertheless, 61% of the hgcA sequences were not assigned to specific clade, indicating that further studies are needed to understand the implication of new microorganisms carrying hgcA in the Hg methylation in marine environments. These first results suggest that sulfur cycle drives the Hg-methylation in marine ecosystem.
Subject(s)
Mercury/analysis , Methylmercury Compounds/analysis , Microbiota , Water Pollutants, Chemical , Atlantic Ocean , Bacteria , Geologic SedimentsABSTRACT
Latin America, like other areas in the world, is faced with the problem of high arsenic (As) background in surface and groundwater, with impacts on human health. We studied As biogeochemical cycling by periphyton in Lake Titicaca and the mine-impacted Lake Uru Uru. As concentration was measured in water, sediment, totora plants (Schoenoplectus californicus) and periphyton growing on stems, and As speciation was determined by X-ray absorption spectroscopy in bulk and EDTA-extracted periphyton. Dissolved arsenic was between 5.0 and 15 µg L-1 in Lake Titicaca and reached 78.5 µg L-1 in Lake Uru Uru. As accumulation in periphyton was highly variable. We report the highest As bioaccumulation factors ever measured (BAFsperiphyton up to 245,000) in one zone of Lake Titicaca, with As present as As(V) and monomethyl-As (MMA(V)). Non-accumulating periphyton found in the other sites presented BAFsperiphyton between 1281 and 11,962, with As present as As(III), As(V) and arsenosugars. DNA analysis evidenced several taxa possibly related to this phenomenon. Further screening of bacterial and algal isolates would be necessary to identify the organism(s) responsible for As hyperaccumulation. Impacts on the ecosystem and human health appear limited, but such organisms or consortia would be of great interest for the treatment of As contaminated water.
Subject(s)
Arsenic/analysis , Bioaccumulation , Environmental Monitoring/methods , Groundwater/chemistry , Lakes/chemistry , Arsenates/analysis , Bolivia , Cyperaceae/chemistry , Ecosystem , Geologic Sediments/chemistry , Humans , Monosaccharides/analysis , Periphyton , Plant Extracts/chemistry , Water Pollutants, Chemical/analysis , X-Ray Absorption SpectroscopyABSTRACT
Desulfovibrio BerOc1 is a sulfate-reducing bacterium isolated from the Berre lagoon (French Mediterranean coast). BerOc1 is able to methylate and demethylate mercury. The genome size is 4,081,579 bp assembled into five contigs. We identified the hgcA and hgcB genes involved in mercury methylation, but not those responsible for mercury demethylation.
ABSTRACT
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
Subject(s)
Actinobacteria/isolation & purification , Geologic Sediments/microbiology , Arsenic/analysis , Croatia , Environmental Monitoring , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysisABSTRACT
The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.