Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Front Oncol ; 14: 1304374, 2024.
Article in English | MEDLINE | ID: mdl-38357194

ABSTRACT

Oncolytic viruses (OVs) selectively replicate in tumor cells resulting in lysis, spreading of new infectious units and induction of antitumor immune responses through abrogating an immunosuppressive tumor microenvironment (TME). Due to their mode of action, OVs are ideal combination partners with targeted immunotherapies. One highly attractive combination is the inhibition of the 'don't-eat-me'-signal CD47, which is known to increase the phagocytic potential of tumor-associated macrophages. In this work, we analyzed the combination approach consisting of the YB-1-based oncolytic adenovirus XVir-N-31 (XVir) and the CD47 inhibitor (CD47i) B6.H12.2 concerning its phagocytic potential. We investigate phagocytosis of XVir-, adenovirus wildtype (AdWT)-, and non-infected established pediatric sarcoma cell lines by different monocytic cells. Phagocytes (immature dendritic cells and macrophages) were derived from THP-1 cells and healthy human donors. Phagocytosis of tumor cells was assessed via FACS analysis in the presence and absence of CD47i. Additional characterization of T cell-stimulatory surface receptors as well as chemo-/cytokine analyses were performed. Furthermore, tumor cells were infected and studied for the surface expression of the 'eat-me'-signal calreticulin (CALR) and the 'don't-eat-me'-signal CD47. We herein demonstrate that (1) XVir-infected tumor cells upregulate both CALR and CD47. XVir induces higher upregulation of CD47 than AdWT. (2) XVir-infection enhances phagocytosis in general and (3) the combination of XVir and CD47i compared to controls showed by far superior enhancement of phagocytosis, tumor cell killing and innate immune activation. In conclusion, the combination of CD47i and XVir causes a significant increase in phagocytosis exceeding the monotherapies considerably accompanied by upregulation of T cell-stimulatory receptor expression and inflammatory chemo/-cytokine secretion.

2.
Front Immunol ; 15: 1330868, 2024.
Article in English | MEDLINE | ID: mdl-38318175

ABSTRACT

Background: Ewing sarcoma (EwS) is an aggressive and highly metastatic bone and soft tissue tumor in pediatric patients and young adults. Cure rates are low when patients present with metastatic or relapsed disease. Therefore, innovative therapy approaches are urgently needed. Cellular- and oncolytic virus-based immunotherapies are on the rise for solid cancers. Methods: Here, we assess the combination of EwS tumor-associated antigen CHM1319-specific TCR-transgenic CD8+ T cells and the YB-1-driven (i.e. E1A13S-deleted) oncolytic adenovirus XVir-N-31 in vitro and in a xenograft mouse model for antitumor activity and immunostimulatory properties. Results: In vitro both approaches specifically kill EwS cell lines in a synergistic manner over controls. This effect was confirmed in vivo, with increased survival using the combination therapy. Further in vitro analyses of immunogenic cell death and antigen presentation confirmed immunostimulatory properties of virus-infected EwS tumor cells. As dendritic cell maturation was also increased by XVir-N-31, we observed superior proliferation of CHM1319-specific TCR-transgenic CD8+ T cells only in virus-tested conditions, emphasizing the superior immune-activating potential of XVir-N-31. Conclusion: Our data prove synergistic antitumor effects in vitro and superior tumor control in a preclinical xenograft setting. Combination strategies of EwS-redirected T cells and YB-1-driven virotherapy are a highly promising immunotherapeutic approach for EwS and warrant further evaluation in a clinical setting.


Subject(s)
Oncolytic Virotherapy , Sarcoma, Ewing , Humans , Mice , Animals , Child , CD8-Positive T-Lymphocytes/pathology , Heterografts , Disease Models, Animal , Animals, Genetically Modified , Receptors, Antigen, T-Cell/genetics , Transcription Factors
3.
J Clin Invest ; 134(9)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530366

ABSTRACT

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Subject(s)
DNA Damage , Extracellular Vesicles , Oncogene Proteins, Fusion , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Transcriptional Regulator ERG , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Transcriptional Regulator ERG/genetics , Transcriptional Regulator ERG/metabolism , Male , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/immunology , Cell Line, Tumor , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Mice , Animals , Heterochromatin/metabolism , Heterochromatin/genetics
4.
Clin Cancer Res ; 29(10): 1996-2011, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36892582

ABSTRACT

PURPOSE: Ewing sarcoma (EwS) is a highly malignant pediatric tumor characterized by a non-T-cell-inflamed immune-evasive phenotype. When relapsed or metastasized, survival is poor, emphasizing the need for novel treatment strategies. Here, we analyze the novel combination approach using the YB-1-driven oncolytic adenovirus XVir-N-31 and CDK4/6 inhibition to augment EwS immunogenicity. EXPERIMENTAL DESIGN: In vitro, viral toxicity, replication, and immunogenicity were studied in several EwS cell lines. In vivo tumor xenograft models with transient humanization were applied to evaluate tumor control, viral replication, immunogenicity, and dynamics of innate as well as human T cells after treatment with XVir-N-31 combined with CDK4/6 inhibition. Furthermore, immunologic features of dendritic cell maturation and T-cell-stimulating capacities were assessed. RESULTS: The combination approach significantly increased viral replication and oncolysis in vitro, induced HLA-I upregulation, and IFNγ-induced protein 10 expression and enhanced maturation of monocytic dendritic cells with superior capacities to stimulate tumor antigen-specific T cells. These findings were confirmed in vivo showing tumor infiltration by (i) monocytes with antigen-presenting capacities and M1 macrophage marker genes, (ii) TReg suppression in spite of adenovirus infection, (iii) superior engraftment, and (iv) tumor infiltration by human T cells. Consequently, survival was improved over controls with signs of an abscopal effect after combination treatment. CONCLUSIONS: The joint forces of the YB-1-driven oncolytic adenovirus XVir-N-31 and CDK4/6 inhibition induce therapeutically relevant local and systemic antitumor effects. Innate as well as adaptive immunity against EwS is boosted in this preclinical setting, pointing toward high therapeutic potential in the clinic.


Subject(s)
Adenoviridae Infections , Oncolytic Virotherapy , Oncolytic Viruses , Sarcoma, Ewing , Child , Humans , Sarcoma, Ewing/pathology , Adenoviridae/genetics , Cell Line, Tumor , Adaptive Immunity , Oncolytic Viruses/genetics , Xenograft Model Antitumor Assays , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism
5.
Cancers (Basel) ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36612267

ABSTRACT

We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.

6.
Cancers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36428578

ABSTRACT

Ewing sarcoma (EwS) is a highly malignant sarcoma of bone and soft tissue with early metastatic spread and an age peak in early puberty. The prognosis in advanced stages is still dismal, and the long-term effects of established therapies are severe. Efficacious targeted therapies are urgently needed. Our previous work has provided preliminary safety and efficacy data utilizing T cell receptor (TCR) transgenic T cells, generated by retroviral gene transfer, targeting HLA-restricted peptides on the tumor cell derived from metastatic drivers. Here, we compared T cells engineered with either CRISPR/Cas9 or retroviral gene transfer. Firstly, we confirmed the feasibility of the orthotopic replacement of the endogenous TCR by CRISPR/Cas9 with a TCR targeting our canonical metastatic driver chondromodulin-1 (CHM1). CRISPR/Cas9-engineered T cell products specifically recognized and killed HLA-A*02:01+ EwS cell lines. The efficiency of retroviral transduction was higher compared to CRISPR/Cas9 gene editing. Both engineered T cell products specifically recognized tumor cells and elicited cytotoxicity, with CRISPR/Cas9 engineered T cells providing prolonged cytotoxic activity. In conclusion, T cells engineered with CRISPR/Cas9 could be feasible for immunotherapy of EwS and may have the advantage of more prolonged cytotoxic activity, as compared to T cells engineered with retroviral gene transfer.

7.
Front Oncol ; 12: 878367, 2022.
Article in English | MEDLINE | ID: mdl-35619911

ABSTRACT

Background: Patients with stage IV alveolar rhabdomyosarcoma (RMA) have a 5-year-survival rate not exceeding 30%. Here, we assess the role of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for these patients in comparison to standard-of-care regimens. We also compare the use of HLA-mismatched vs. HLA-matched grafts after reduced vs. myeloablative conditioning regimens, respectively. Patients and Methods: In this retrospective analysis, we compare event-free survival (EFS), overall survival (OS), and toxicity of HLA-mismatched vs. -matched transplanted patients in uni- and multivariate analyses (total: n = 50, HLA-matched: n = 15, HLA-mismatched: n = 35). Here, the factors age at diagnosis, age at allo-HSCT, sex, Oberlin score, disease status at allo-HSCT, and HLA graft type are assessed. For 29 primarily transplanted patients, three matched non-transplanted patients per one transplanted patient were identified from the CWS registry. Outcomes were respectively compared for OS and EFS. Matching criteria included sex, age at diagnosis, favorable/unfavorable primary tumor site, and metastatic sites. Results: Median EFS and OS did not differ significantly between HLA-mismatched and -matched patients. In the mismatched group, incidence of acute GvHD was 0.87 (grade III-IV: 0.14) vs. 0.80 in HLA-matched patients (grade III-IV: 0.20). Transplant-related mortality (TRM) of all patients was 0.20 and did not differ significantly between HLA-mismatched and -matched groups. A proportion of 0.58 relapsed or progressed and died of disease (HLA-mismatched: 0.66, HLA-matched: 0.53) whereas 0.18 were alive in complete remission (CR) at data collection. Multivariate and competing risk analyses confirmed CR and very good partial response (VGPR) status prior to allo-HSCT as the only decisive predictor for OS (p < 0.001). Matched-pair survival analyses of primarily transplanted patients vs. matched non-transplanted patients also identified disease status prior to allo-HSCT (CR, VGPR) as the only significant predictor for EFS. Here, OS was not affected, however. Conclusion: In this retrospective analysis, only a subgroup of patients with good response at allo-HSCT survived. There was no survival benefit of allo-transplanted patients compared to matched controls, suggesting the absence of a clinically relevant graft-versus-RMA effect in the current setting. The results of this analysis do not support further implementation of allo-HSCT in RMA stage IV patients.

8.
Cells ; 10(11)2021 11 08.
Article in English | MEDLINE | ID: mdl-34831294

ABSTRACT

Ewing's sarcoma (EwS) is a pediatric solid tumor entity with low somatic mutational burden and a low rate of tumor-infiltrating T cells, indicating a low extent of immunogenicity. In EwS, immunogenicity may furthermore be significantly diminished by a predominantly M2 macrophage driven pro-tumorigenic tumor microenvironment. In the past, we demonstrated that CHM1319-specific TCR-transgenic T cells are able to control EwS growth in a preclinical mouse model as well as in a patient with metastatic disease. However, new adjuvant techniques to induce long lasting and curative CHM1319-specific TCR-transgenic T cell-mediated anti-tumor responses are needed. In this work, we sought to identify a technique to improve the cytotoxic effect of CHM1319-specific TCR-transgenic T cell by altering the immunogenic cell surface marker expression on EwS cell lines using different cytokines. We demonstrate that TNF, IL-6, IL-1ß and PGE2 cause pro-immunogenic CD83, MHC class I and II as well as ICAM-1 upregulation in EwS cell lines. This observation was associated with significantly improved recognition and killing of the tumor cells by EwS-specific CHM1319/HLA-A*02:01-restricted TCR-transgenic T cells. Conclusively, we demonstrate that the induction of an inflammatory signature renders EwS more susceptible to adoptive T cell therapy. TNF, which is upregulated during inflammatory processes, is of particular translational interest as its secretion may be induced in the patients e.g., by irradiation and hyperthermia in the clinical setting. In future clinical protocols, this finding may be important to identify appropriate conditioning regimens as well as point of time for adoptive T cell-based immunotherapy in EwS patients.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Intercellular Adhesion Molecule-1/metabolism , Monocytes/pathology , Sarcoma, Ewing/immunology , T-Lymphocytes, Cytotoxic/immunology , Up-Regulation , Antigens, CD , Cell Line, Tumor , Dendritic Cells/metabolism , Dendritic Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Immunoglobulins , Membrane Glycoproteins , Sarcoma, Ewing/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/genetics , CD83 Antigen
9.
Cells ; 10(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34440851

ABSTRACT

Ewing sarcoma (EwS) is an aggressive pediatric cancer of bone and soft tissues characterized by scant T cell infiltration and predominance of immunosuppressive myeloid cells. Given the important roles of extracellular vesicles (EVs) in cancer-host crosstalk, we hypothesized that EVs secreted by EwS tumors target myeloid cells and promote immunosuppressive phenotypes. Here, EVs were purified from EwS and fibroblast cell lines and exhibited characteristics of small EVs, including size (100-170 nm) and exosome markers CD63, CD81, and TSG101. Treatment of healthy donor-derived CD33+ and CD14+ myeloid cells with EwS EVs but not with fibroblast EVs induced pro-inflammatory cytokine release, including IL-6, IL-8, and TNF. Furthermore, EwS EVs impaired differentiation of these cells towards monocytic-derived dendritic cells (moDCs), as evidenced by reduced expression of co-stimulatory molecules CD80, CD86 and HLA-DR. Whole transcriptome analysis revealed activation of gene expression programs associated with immunosuppressive phenotypes and pro-inflammatory responses. Functionally, moDCs differentiated in the presence of EwS EVs inhibited CD4+ and CD8+ T cell proliferation as well as IFNγ release, while inducing secretion of IL-10 and IL-6. Therefore, EwS EVs may promote a local and systemic pro-inflammatory environment and weaken adaptive immunity by impairing the differentiation and function of antigen-presenting cells.


Subject(s)
Dendritic Cells/metabolism , Extracellular Vesicles/metabolism , Adaptive Immunity , B7-1 Antigen/metabolism , Cell Differentiation , Cell Line , Dendritic Cells/cytology , Dendritic Cells/immunology , Extracellular Vesicles/transplantation , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Interleukin-10/metabolism , Interleukin-6/metabolism , Lymphocyte Activation , Monocytes/cytology , Monocytes/metabolism , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Transcriptome , Tumor Microenvironment
10.
Cells ; 9(7)2020 06 29.
Article in English | MEDLINE | ID: mdl-32610710

ABSTRACT

In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2-/-gc-/- mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5-6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS.


Subject(s)
Antigens, Neoplasm/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Oxidoreductases/metabolism , Sarcoma, Ewing/metabolism , Animals , Cells, Cultured , Computational Biology , DNA-Binding Proteins/metabolism , Flow Cytometry , Humans , Mice, Inbred BALB C , Mice, Mutant Strains , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL