Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Physiol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687185

ABSTRACT

During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.

2.
J Physiol ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408065

ABSTRACT

Hypoxia at high altitude facilitates changes in ventilatory control that can lead to nocturnal periodic breathing (nPB). Here, we introduce a placebo-controlled approach to prevent nPB by increasing inspiratory CO2 and used it to assess whether nPB contributes to the adverse effects of hypoxia on sleep architecture. In a randomized, single-blinded, crossover design, 12 men underwent two sojourns (three days/nights each, separated by 4 weeks) in hypobaric hypoxia corresponding to 4000 m altitude, with polysomnography during the first and third night of each sojourn. During all nights, subjects' heads were encompassed by a canopy retaining exhaled CO2 , and CO2 concentration in the canopy (i.e. inspiratory CO2 concentration) was controlled by adjustment of fresh air inflow. Throughout the placebo sojourn inspiratory CO2 was ≤0.2%, whereas throughout the other sojourn it was increased to 1.76% (IQR, 1.07%-2.44%). During the placebo sojourn, total sleep time (TST) with nPB was 54.3% (37.4%-80.8%) and 45.0% (24.5%-56.5%) during the first and the third night, respectively (P = 0.042). Increased inspiratory CO2 reduced TST with nPB by an absolute 38.1% (28.1%-48.1%), the apnoea-hypopnoea index by 58.1/h (40.1-76.1/h), and oxygen desaturation index ≥3% by 56.0/h (38.9.1-73.2/h) (all P < 0.001), whereas it increased the mean arterial oxygen saturation in TST by 2.0% (0.4%-3.5%, P = 0.035). Increased inspiratory CO2 slightly increased the percentage of N3 sleep during the third night (P = 0.045), without other effects on sleep architecture. Increasing inspiratory CO2 effectively prevented hypoxia-induced nPB without affecting sleep macro-architecture, indicating that nPB does not explain the sleep deterioration commonly observed at high altitudes. KEY POINTS: Periodic breathing is common during sleep at high altitude, and it is unclear how this affects sleep architecture. We developed a placebo-controlled approach to prevent nocturnal periodic breathing (nPB) with inspiratory CO2 administration and used it to assess the effects of nPB on sleep in hypobaric hypoxia. Nocturnal periodic breathing was effectively mitigated by an increased inspiratory CO2 fraction in a blinded manner. Prevention of nPB did not lead to relevant changes in sleep architecture in hypobaric hypoxia. We conclude that nPB does not explain the deterioration in sleep architecture commonly observed at high altitude.

3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339038

ABSTRACT

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/pathology , alpha-Synuclein , Parkinsonian Disorders/pathology , Dopaminergic Neurons/pathology , Hypoxia/pathology , Oxygen
4.
Minerva Med ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101381

ABSTRACT

Every year millions of people fly to high-altitude destinations. They thereby expose themselves to specific high-altitude conditions. The hypoxic environment (low ambient oxygen availability) constitutes a major factor affecting health and well-being at high altitude. While the oxygen availability is already moderately reduced inside the aircraft cabin, this reduction becomes aggravated when leaving the plane at high-altitude destinations. Especially if not pre-acclimatized, the risk of suffering from high-altitude illnesses, e.g., acute mountain sickness, high-altitude cerebral or pulmonary edema, increases with the level of altitude. In addition, diminished oxygen availability impairs exercise tolerance, which not only limits physical activity at high altitude but may also provoke symptomatic exacerbation of pre-existing diseases. Moreover, the cold and dry ambient air and increased levels of solar radiation may contribute to adverse health effects at higher altitude. Thus, medical pre-examination and pre-flight advice, and proper preparation (pre-acclimatization, exercise training, and potentially adaptation of pharmacological regimes) are of utmost importance to reduce negative health impacts and frustrating travel experiences.

5.
Nat Rev Dis Primers ; 10(1): 43, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902312

ABSTRACT

Millions of people visit high-altitude regions annually and more than 80 million live permanently above 2,500 m. Acute high-altitude exposure can trigger high-altitude illnesses (HAIs), including acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE). Chronic mountain sickness (CMS) can affect high-altitude resident populations worldwide. The prevalence of acute HAIs varies according to acclimatization status, rate of ascent and individual susceptibility. AMS, characterized by headache, nausea, dizziness and fatigue, is usually benign and self-limiting, and has been linked to hypoxia-induced cerebral blood volume increases, inflammation and related trigeminovascular system activation. Disruption of the blood-brain barrier leads to HACE, characterized by altered mental status and ataxia, and increased pulmonary capillary pressure, and related stress failure induces HAPE, characterized by dyspnoea, cough and exercise intolerance. Both conditions are progressive and life-threatening, requiring immediate medical intervention. Treatment includes supplemental oxygen and descent with appropriate pharmacological therapy. Preventive measures include slow ascent, pre-acclimatization and, in some instances, medications. CMS is characterized by excessive erythrocytosis and related clinical symptoms. In severe CMS, temporary or permanent relocation to low altitude is recommended. Future research should focus on more objective diagnostic tools to enable prompt treatment, improved identification of individual susceptibilities and effective acclimatization and prevention options.


Subject(s)
Altitude Sickness , Altitude , Humans , Altitude Sickness/physiopathology , Altitude Sickness/epidemiology , Altitude Sickness/complications , Acclimatization/physiology , Brain Edema/physiopathology , Brain Edema/etiology , Brain Edema/epidemiology , Pulmonary Edema/physiopathology , Pulmonary Edema/etiology , Pulmonary Edema/epidemiology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/epidemiology , Hypertension, Pulmonary/etiology , Hypoxia/physiopathology , Hypoxia/complications , Hypoxia/etiology
6.
Clinics ; 66(5): 747-751, 2011. tab
Article in English | LILACS | ID: lil-593835

ABSTRACT

OBJECTIVES: To investigate gender-specific relationships between cardiorespiratory fitness and factors that predict the development of diabetes and to identify the risk factors that predict fasting plasma glucose and 2-hour plasma glucose levels. INTRODUCTION: Different risk factors (e.g., low cardiorespiratory fitness) may cause elevated plasma glucose levels in men compared to women. Therefore, gender-specific analyses are needed. METHODS: Cardiorespiratory fitness (maximal power output achieved during a standard cycle ergometry test), resting blood pressure, total serum cholesterol, high-density lipoprotein cholesterol and triglyceride levels were measured in 32 pre-diabetic men (mean age: 57.2 + 6.8 years; mean body mass index (BMI): 28.5 + 3.0 kg/m²) and 40 pre-diabetic women (mean age: 55.0 + 7.3 years, mean BMI: 30.4+5.7 kg/m²). A stepwise regression with backward variable selection was performed to construct models that predict 2-hour and fasting plasma glucose levels. RESULTS: Maximal power output was inversely related to the 2-hour plasma glucose level in the entire group (r= -0.237, p<0.05), but this relationship was significant only for males (r= -0.404, p<0.05). No significant correlation was found between female gender and cardiorespiratory fitness. Age and cardiorespiratory fitness were significant predictors of 2-hour plasma glucose levels in men. High-density lipoprotein cholesterol was predictive of 2-hour plasma glucose levels in women. Triglycerides in women and BMI in men were the only predictors of fasting plasma glucose levels. CONCLUSIONS: These findings may have consequences for the development of gender-specific diabetes prevention programs. Whereas increasing cardiorespiratory fitness should be a key goal for men, improving the lipid profile seems to be more beneficial for women. However, the present results do not negate the positive effects of increasing cardiorespiratory fitness in women.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Blood Glucose/analysis , Physical Fitness/physiology , Prediabetic State/blood , Prediabetic State/physiopathology , Body Mass Index , Blood Pressure/physiology , Cholesterol/blood , Exercise Test , Fasting/blood , Glucose Tolerance Test/methods , Lipoproteins, HDL/blood , Predictive Value of Tests , Risk Factors , Sex Factors , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL