Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS One ; 19(1): e0292091, 2024.
Article in English | MEDLINE | ID: mdl-38277356

ABSTRACT

Many of the pathological consequences of chronic kidney disease can be attributed to an elevation in serum phosphate levels. Current therapies focused on decreasing intestinal phosphate absorption to treat hyperphosphatemia are inadequate. The most effective therapeutic strategy may be to target multiple absorptive pathways. In this study, the ability of a novel inhibitor of the intestinal sodium hydrogen exchanger 3 (NHE3), LY3304000, which inhibits paracellular, diffusional uptake of phosphate, to work in combination with an inhibitor of the active transporter, sodium dependent phosphate cotransporter 2b (NPT2b), LY3358966, was explored. LY3304000 modestly inhibited the acute uptake of phosphate into plasma of rats, while surprisingly, it doubled the rate of phosphate uptake in mice, an animal model dominated by NPT2b mediated acute phosphate uptake. In rats, LY3004000 and LY3358966 work in concert to inhibit acute phosphate uptake. On top of LY3358966, LY3304000 further decreased the acute uptake of phosphate into plasma. Studies measuring the recovery of radiolabeled phosphate in the intestine demonstrated LY3304000 and LY3358966 synergistically inhibited the absorption of phosphate in rats. We hypothesize the synergism is because the NHE3 inhibitor, LY3304000, has two opposing effects on intestinal phosphate absorption in rats, first it decreases diffusion mediated paracellular phosphate absorption, while second, it simultaneously increases phosphate absorption through the NPT2b pathway. NHE3 inhibition decreases proton export from enterocytes and raises the cell surface pH. In vitro, NPT2b mediated phosphate transport is increased at higher pHs. The increased NPT2b mediated transport induced by NHE3 inhibition is masked in rats which have relatively low levels of NPT2b mediated phosphate transport, by the more robust inhibition of diffusion mediated phosphate absorption. Thus, the inhibition of NPT2b mediated phosphate transport in rats in the presence of NHE3 inhibition has an effect that exceeds its effect in the absence of NHE3 inhibition, leading to the observed synergism on phosphate absorption between NPT2b and NHE3 inhibition.


Subject(s)
Phosphates , Renal Insufficiency, Chronic , Rats , Mice , Animals , Phosphates/metabolism , Sodium-Hydrogen Exchanger 3 , Rodentia , Intestinal Absorption , Renal Insufficiency, Chronic/metabolism , Sodium-Hydrogen Exchangers/metabolism
2.
J Med Chem ; 59(2): 750-5, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26683992

ABSTRACT

A transdermal SARM has a potential to have therapeutic benefit through anabolic activity in muscle while sparing undesired effects of benign prostate hyperplasia (BPH) and liver-mediated decrease in HDL-C. 2-Chloro-4-[(2-hydroxy-2-methyl-cyclopentyl)amino]-3-methyl-benzonitrile 6 showed the desired muscle and prostate effects in a preclinical ORX rat model. Compound 6 had minimal effect on HDL-C levels in cynomolgus monkeys and showed human cadaver skin permeability, thus making it an effective tool for proof-of-concept studies in a clinical setting.


Subject(s)
Anabolic Agents/therapeutic use , Androgen Antagonists/therapeutic use , Aniline Compounds/therapeutic use , Muscular Atrophy/drug therapy , Nitriles/therapeutic use , Administration, Cutaneous , Anabolic Agents/administration & dosage , Anabolic Agents/chemical synthesis , Androgen Antagonists/administration & dosage , Androgen Antagonists/chemical synthesis , Aniline Compounds/administration & dosage , Aniline Compounds/chemical synthesis , Animals , Cholesterol, HDL/metabolism , Humans , Hypercholesterolemia/chemically induced , In Vitro Techniques , Liver/drug effects , Liver/metabolism , Macaca fascicularis , Male , Models, Molecular , Nitriles/administration & dosage , Nitriles/chemical synthesis , Orchiectomy , Prostatic Hyperplasia/chemically induced , Rats , Skin Absorption , Structure-Activity Relationship
3.
ACS Med Chem Lett ; 5(10): 1138-42, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25313327

ABSTRACT

Cathepsin S (Cat S) plays an important role in many pathological conditions, including abdominal aortic aneurysm (AAA). Inhibition of Cat S may provide a new treatment for AAA. To date, several classes of Cat S inhibitors have been reported, many of which form covalent interactions with the active site Cys25. Herein, we report the discovery of a novel series of noncovalent inhibitors of Cat S through a medium-throughput focused cassette screen and the optimization of the resulting hits. Structure-based optimization efforts led to Cat S inhibitors such as 5 and 9 with greatly improved potency and drug disposition properties. This series of compounds binds to the S2 and S3 subsites without interacting with the active site Cys25. On the basis of in vitro potency, selectivity, and efficacy in a CaCl2-induced AAA in vivo model, 5 (LY3000328) was selected for clinical development.

SELECTION OF CITATIONS
SEARCH DETAIL