Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 273, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520566

ABSTRACT

An ever-growing body of literature evidences the protective role of polyhydroxyalkanoates (PHAs) against a plethora of mostly physical stressors in prokaryotic cells. To date, most of the research done involved bacterial strains isolated from habitats not considered to be life-challenging or extremely impacted by abiotic environmental factors. Polar region microorganisms experience a multitude of damaging factors in combinations rarely seen in other of Earth's environments. Therefore, the main objective of this investigation was to examine the role of PHAs in the adaptation of psychrophilic, Arctic-derived bacteria to stress conditions. Arctic PHA producers: Acidovorax sp. A1169 and Collimonas sp. A2191, were chosen and their genes involved in PHB metabolism were deactivated making them unable to accumulate PHAs (ΔphaC) or to utilize them (Δi-phaZ) as a carbon source. Varying stressors were applied to the wild-type and the prepared mutant strains and their survival rates were assessed based on CFU count. Wild-type strains with a functional PHA metabolism were best suited to survive the freeze-thaw cycle - a common feature of polar region habitats. However, the majority of stresses were best survived by the ΔphaC mutants, suggesting that the biochemical imbalance caused by the lack of PHAs induced a permanent cell-wide stress response thus causing them to better withstand the stressor application. Δi-phaZ mutants were superior in surviving UV irradiation, hinting that PHA granule presence in bacterial cells is beneficial despite it being biologically inaccessible. Obtained data suggests that the ability to metabolize PHA although important for survival, probably is not the most crucial mechanism in the stress-resistance strategies arsenal of cold-loving bacteria. KEY POINTS: • PHA metabolism helps psychrophiles survive freezing • PHA-lacking psychrophile mutants cope better with oxidative and heat stresses • PHA granule presence enhances the UV resistance of psychrophiles.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/metabolism , Bacteria/metabolism , Carbon/metabolism
2.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126044

ABSTRACT

Biological invasions are now seen as one of the main threats to the Antarctic ecosystem. An example of such an invasion is the recent colonization of the H. Arctowski Polish Antarctic Station area by the non-native grass Poa annua. This site was previously occupied only by native plants like the Antarctic hair grass Deschampsia antarctica. To adapt successfully to new conditions, plants interact with soil microorganisms, including fungi. The aim of this study was to determine how the newly introduced grass P. annua established an interaction with fungi compared to resident grass D. antarctica. We found that fungal diversity in D. antarctica roots was significantly higher compared with P. annua roots. D. antarctica managed a biodiverse microbiome because of its ability to recruit fungal biocontrol agents from the soil, thus maintaining a beneficial nature of the endophyte community. P. annua relied on a set of specific fungal taxa, which likely modulated its cold response, increasing its competitiveness in Antarctic conditions. Cultivated endophytic fungi displayed strong chitinolysis, pointing towards their role as phytopathogenic fungi, nematode, and insect antagonists. This is the first study to compare the root mycobiomes of both grass species by direct culture-independent techniques as well as culture-based methods.


Subject(s)
Ecosystem , Endophytes , Fungi , Introduced Species , Poaceae , Antarctic Regions , Poaceae/microbiology , Fungi/classification , Fungi/physiology , Endophytes/physiology , Plant Roots/microbiology , Soil Microbiology , Mycobiome , Poa/microbiology , Biodiversity
3.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891852

ABSTRACT

Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health.


Subject(s)
Ducks , Animals , Ducks/microbiology , Humans , Salmonella/genetics , Salmonella/pathogenicity , Salmonella/isolation & purification , Salmonella/drug effects , Whole Genome Sequencing , Genomic Islands/genetics , Salmonella Infections, Animal/microbiology , Anti-Bacterial Agents/pharmacology , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Salmonella enterica/isolation & purification , Salmonella enterica/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Phylogeny , Drug Resistance, Bacterial/genetics , Plasmids/genetics
4.
Environ Microbiol Rep ; 16(2): e13247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644048

ABSTRACT

The cereal leaf beetle (CLB, Oulema melanopus) is one of the major cereal pests. The effect of insecticides belonging to different chemical classes, with different mechanisms of action and the active substances' concentrations on the CLB bacterial microbiome, was investigated. Targeted metagenomic analysis of the V3-V4 regions of the 16S ribosomal gene was used to determine the composition of the CLB bacterial microbiome. Each of the insecticides caused a decrease in the abundance of bacteria of the genus Pantoea, and an increase in the abundance of bacteria of the genus Stenotrophomonas, Acinetobacter, compared to untreated insects. After cypermethrin application, a decrease in the relative abundance of bacteria of the genus Pseudomonas was noted. The dominant bacterial genera in cypermethrin-treated larvae were Lactococcus, Pantoea, while in insects exposed to chlorpyrifos or flonicamid it was Pseudomonas. Insecticide-treated larvae were characterized, on average, by higher biodiversity and richness of bacterial genera, compared to untreated insects. The depletion of CLB-associated bacteria resulted in a decrease in larval survival, especially after cypermethrin and chlorpyrifos treatments. The use of a metagenome-based functional prediction approach revealed a higher predicted function of bacterial acetyl-CoA C-acetyltransferase in flonicamid and chlorpyrifos-treated larvae and tRNA dimethyltransferase in cypermethrin-treated insects than in untreated insects.


Subject(s)
Bacteria , Coleoptera , Insecticides , Larva , Animals , Insecticides/pharmacology , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Larva/microbiology , Larva/drug effects , Coleoptera/microbiology , Coleoptera/drug effects , RNA, Ribosomal, 16S/genetics , Microbiota/drug effects , Metagenomics , Pyrethrins/pharmacology , Chlorpyrifos , Pantoea/genetics , Pantoea/drug effects
5.
Front Plant Sci ; 15: 1323790, 2024.
Article in English | MEDLINE | ID: mdl-38332771

ABSTRACT

Introduction: Pectobacterium cacticida was identified as the causative agent of soft rot disease in cacti. Due to a high potential of spread in the face of global warming, the species poses a significant threat to horticultural and crop industry. The aim of this study was to revise the genomic, physiology and virulence characteristics of P. cacticida and update its phylogenetic position within the Pectobacterium genus. Methods: Whole genome sequences of five P. cacticida strains were obtained and subjected to comprehensive genomic and phylogenomic data analyses. We assessed the presence of virulence determinants and genes associated with host and environmental adaptation. Lipidomic analysis, as well as biochemical and phenotypic assays were performed to correlate genomic findings. Results: Phylogenomic analysis revealed that P. cacticida forms a distinct lineage within the Pectobacterium genus. Genomic evaluation uncovered 516 unique proteins, most of which were involved in cellular metabolism. They included genes of carbohydrate metabolism and transport and ABC transporters. The main differing characteristics from other Pectobacterium species were the lack of a myo-inositol degradation pathway and the presence of the malonate decarboxylase gene. All tested strains were pathogenic towards Opuntia spp., chicory, Chinese cabbage, and potato, but exhibited only mild pathogenicity towards carrot. Discussion: This study sheds light into the genomic characteristics of P. cacticida and highlights the pathogenic potential of the species. Unique genes found in P. cacticida genomes possibly enhance the species' survival and virulence. Based on phylogenomic analyses, we propose the reclassification of P. cacticida to a new genus, Alcorniella comb. nov.

6.
Environ Sci Pollut Res Int ; 31(35): 47727-47741, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007976

ABSTRACT

The study describes the whole-genome sequencing of two antibiotic-resistant representative Escherichia coli strains, isolated from poultry manure in 2020. The samples were obtained from a commercial chicken meat production facility in Poland. The antibiotic resistance profile was characterized by co-resistance to ß-lactam antibiotics, aminoglycosides, and fluoroquinolones. The three identified resistance plasmids (R-plasmids), pECmdr13.2, pECmdr13.3, and pECmdr14.1, harbored various genes conferring resistance to tetracyclines (tetR[A]) for, aminoglycoside (aph, aac, and aad families), ß-lactam (blaCMY-2, blaTEM-176), sulfonamide (sul1, sul2), fluoroquinolone (qnrS1), and phenicol (floR). These plasmids, which have not been previously reported in Poland, were found to carry IS26 insertion elements, the intI1-integrase gene, and conjugal transfer genes, facilitating horizontal gene transfer. Plasmids pECmdr13.2 and pECmdr14.1 also possessed a mercury resistance gene operon related to transposon Tn6196; this promotes plasmid persistence even without antibiotic selection pressure due to co-selection mechanisms such as co-resistance. The chicken manure-derived plasmids belonged to the IncX1 (narrow host range) and IncC (broad host range) incompatibility groups. Similar plasmids have been identified in various environments, clinical isolates, and farm animals, including cattle, swine, and poultry. This study holds significant importance for the One Health approach, as it highlights the potential for antibiotic-resistant bacteria from livestock and food sources, particularly E. coli, to transfer through the food chain to humans and vice versa.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli , Manure , Plasmids , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Poland , Drug Resistance, Multiple, Bacterial/genetics , Manure/microbiology , Anti-Bacterial Agents/pharmacology , Poultry , Chickens
7.
Microbiol Spectr ; 12(8): e0087724, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39012117

ABSTRACT

Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes blaTEM-1 and blaCTX-M-15, sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE: This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli , Feces , Gene Transfer, Horizontal , Plasmids , Animals , Cattle , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Poland , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Whole Genome Sequencing , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Microbial Sensitivity Tests
8.
Front Plant Sci ; 15: 1352318, 2024.
Article in English | MEDLINE | ID: mdl-38576793

ABSTRACT

Introduction: Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods: Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results: The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion: The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.

9.
Front Microbiol ; 15: 1356206, 2024.
Article in English | MEDLINE | ID: mdl-38591037

ABSTRACT

P1 is a model, temperate bacteriophage of the 94 kb genome. It can lysogenize representatives of the Enterobacterales order. In lysogens, it is maintained as a plasmid. We tested P1 interactions with the biocontrol P. agglomerans L15 strain to explore the utility of P1 in P. agglomerans genome engineering. A P1 derivative carrying the Tn9 (cmR) transposon could transfer a plasmid from Escherichia coli to the L15 cells. The L15 cells infected with this derivative formed chloramphenicol-resistant colonies. They could grow in a liquid medium with chloramphenicol after adaptation and did not contain prophage P1 but the chromosomally inserted cmR marker of P1 Tn9 (cat). The insertions were accompanied by various rearrangements upstream of the Tn9 cat gene promoter and the loss of IS1 (IS1L) from the corresponding region. Sequence analysis of the L15 strain genome revealed a chromosome and three plasmids of 0.58, 0.18, and 0.07 Mb. The largest and the smallest plasmid appeared to encode partition and replication incompatibility determinants similar to those of prophage P1, respectively. In the L15 derivatives cured of the largest plasmid, P1 with Tn9 could not replace the smallest plasmid even if selected. However, it could replace the smallest and the largest plasmid of L15 if its Tn9 IS1L sequence driving the Tn9 mobility was inactivated or if it was enriched with an immobile kanamycin resistance marker. Moreover, it could develop lytically in the L15 derivatives cured of both these plasmids. Clearly, under conditions of selection for P1, the mobility of the P1 selective marker determines whether or not the incoming P1 can outcompete the incompatible L15 resident plasmids. Our results demonstrate that P. agglomerans can serve as a host for bacteriophage P1 and can be engineered with the help of this phage. They also provide an example of how antibiotics can modify the outcome of horizontal gene transfer in natural environments. Numerous plasmids of Pantoea strains appear to contain determinants of replication or partition incompatibility with P1. Therefore, P1 with an immobile selective marker may be a tool of choice in curing these strains from the respective plasmids to facilitate their functional analysis.

SELECTION OF CITATIONS
SEARCH DETAIL