ABSTRACT
The newborn's immune system is faced with the challenge of having to learn quickly to fight off infectious agents, but tolerating the colonization of the body surfaces with commensals without reacting with an excessive inflammatory response. Myeloid-derived suppressor cells (MDSC) are innate immune cells with suppressive activity on other immune cells that regulate fetal-maternal tolerance during pregnancy and control intestinal inflammation in neonates. Until now, nothing is known about the role of MDSC in microbiome establishment. One of the transcription factors regulating MDSC homeostasis is the hypoxia-inducible factor 1α (HIF-1α). We investigated the impact of HIF-1α on MDSC accumulation and microbiome establishment during the neonatal period in a mouse model with targeted deletion of HIF-1α in myeloid cells (Hif1a loxP/loxP LysMCre+). We show that in contrast to wildtype mice, where an extensive expansion of MDSC was observed, MDSC expansion in neonatal Hif1a loxP/loxP LysMCre+ mice was dramatically reduced both systemically and locally in the intestine. This was accompanied by an altered microbiome composition and intestinal T-cell homeostasis. Our results point toward a role of MDSC in inflammation regulation in the context of microbiome establishment and thus reveal a new aspect of the biological role of MDSC during the neonatal period.
Subject(s)
Myeloid-Derived Suppressor Cells , Animals , Female , Mice , Pregnancy , Animals, Newborn , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation , Myeloid CellsABSTRACT
Since the molecular mechanisms behind adaptation and the bacterial stress response toward antimicrobial photodynamic therapy (aPDT) are not entirely clear yet, the aim of the present study was to investigate the transcriptomic stress response in Escherichia coli after sublethal treatment with aPDT using RNA sequencing (RNA-Seq). Planktonic cultures of stationary phase E. coli were treated with aPDT using a sublethal dose of the photosensitizer SAPYR. After treatment, RNA was extracted, and RNA-Seq was performed on the Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Furthermore, expression of specific stress response proteins was investigated using Western blot analysis.The analysis of the differential gene expression following pathway enrichment analysis revealed a considerable number of genes and pathways significantly up- or down-regulated in E. coli after sublethal treatment with aPDT. Expression of 1018 genes was up-regulated and of 648 genes was down-regulated after sublethal treatment with aPDT as compared to irradiated controls. Analysis of differentially expressed genes and significantly de-regulated pathways showed regulation of genes involved in oxidative stress response and bacterial membrane damage. In conclusion, the results show a transcriptomic stress response in E. coli upon exposure to aPDT using SAPYR and give an insight into potential molecular mechanisms that may result in development of adaptation.
Subject(s)
Escherichia coli , Photochemotherapy , Photosensitizing Agents , Escherichia coli/drug effects , Photosensitizing Agents/pharmacology , RNA-Seq , Anti-Bacterial Agents/pharmacology , Stress, Physiological/drug effectsABSTRACT
Microbial diversity of 3 raw milk samples after 72 h of storage at 4 °C in a bulk tank was analyzed by culture-dependent and -independent methods. The culture-dependent approach was based on the isolation of bacteria on complex and selective media, chemotaxonomic differentiation of isolates, and subsequent identification by 16S rRNA gene sequencing. The culture-independent approach included the treatment of raw milk with the dye propidium monoazide before direct DNA extraction by mechanic and enzymatic cell lysis approaches, and cloning and sequencing of the 16S rRNA genes. The selective detection of viable bacteria improved the comparability between bacterial compositions of raw milk based on culture-dependent and -independent methods, which was the major objective of this study. Several bacterial species of the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were detected by the culture-dependent method, whereas mainly bacteria of the phylum Proteobacteria as well as low proportions of the phyla Bacteroidetes and Actinobacteria were detected by the culture-independent method. This led to the conclusion that the phylum Firmicutes was strongly discriminated by the culture-independent approach. Generally, species richness detected by the culture-dependent method was higher than that detected by the culture-independent method for all samples. However, few taxa could be detected solely by the direct DNA-based method. In conclusion, the combination of culture-dependent and -independent methods led to the detection of the highest bacterial diversity for the raw milk samples analyzed. It was shown that DNA extraction from raw milk as the essential step in culture-independent methods causes the discrimination of taxa by incomplete cell lysis. Treatment of raw milk with the viability dye propidium monoazide was optimized for the application in raw milk without former removal of milk ingredients and proved to be a suitable tool to ensure comparability of bacterial diversity depicted by both methods.
Subject(s)
Azides/chemistry , Food Contamination/analysis , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/isolation & purification , Milk/microbiology , Propidium/analogs & derivatives , Animals , Cloning, Molecular , Colony Count, Microbial , DNA, Bacterial/genetics , Food Microbiology , Gram-Positive Bacteria/genetics , Phylogeny , Propidium/chemistry , RNA, Ribosomal, 16S/geneticsABSTRACT
The complex interplay of a pathogen with its virulence and fitness factors, the host's immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.
ABSTRACT
Despite the widespread use of antiseptics such as chlorhexidine digluconate (CHX) in dental practice and oral care, the risks of potential resistance toward these antimicrobial compounds in oral bacteria have only been highlighted very recently. Since the molecular mechanisms behind antiseptic resistance or adaptation are not entirely clear and the bacterial stress response has not been investigated systematically so far, the aim of the present study was to investigate the transcriptomic stress response in Streptococcus mutans after treatment with CHX using RNA sequencing (RNA-seq). Planktonic cultures of stationary-phase S. mutans were treated with a sublethal dose of CHX (125 µg/mL) for 5 min. After treatment, RNA was extracted, and RNA-seq was performed on an Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Analysis of differential gene expression following pathway analysis revealed a considerable number of genes and pathways significantly up- or downregulated in S. mutans after sublethal treatment with CHX. In summary, the expression of 404 genes was upregulated, and that of 271 genes was downregulated after sublethal CHX treatment. Analysis of differentially expressed genes and significantly regulated pathways showed regulation of genes involved in purine nucleotide synthesis, biofilm formation, transport systems and stress responses. In conclusion, the results show a transcriptomic stress response in S. mutans upon exposure to CHX and offer insight into potential mechanisms that may result in development of resistances.