ABSTRACT
Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center's BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe's research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B∗55:01 allele (OR 1.41 95% CI 1.33-1.49, p value 2.04 × 10-31) and confirmed by independent replication in 23andMe's research cohort (OR 1.30 95% CI 1.25-1.34, p value 1.00 × 10-47). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B∗55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.
Subject(s)
Arthritis, Rheumatoid/genetics , Drug Hypersensitivity/genetics , HLA-B Antigens/genetics , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Psoriasis/genetics , Adult , Alleles , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/immunology , Chromosomes, Human, Pair 6/chemistry , Drug Hypersensitivity/complications , Drug Hypersensitivity/etiology , Drug Hypersensitivity/immunology , Electronic Health Records , Europe , Female , Gene Expression , Genetic Loci , Genetic Predisposition to Disease , Genome, Human , Genome-Wide Association Study , HLA-B Antigens/immunology , Histocompatibility Testing , Humans , Male , Penicillins/adverse effects , Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology , Psoriasis/complications , Psoriasis/immunology , Self Report , T-Lymphocytes/immunology , T-Lymphocytes/pathology , United StatesABSTRACT
Febrile seizures represent the most common type of pathological brain activity in young children and are influenced by genetic, environmental and developmental factors. In a minority of cases, febrile seizures precede later development of epilepsy. We conducted a genome-wide association study of febrile seizures in 7635 cases and 83 966 controls identifying and replicating seven new loci, all with P < 5 × 10-10. Variants at two loci were functionally related to altered expression of the fever response genes PTGER3 and IL10, and four other loci harboured genes (BSN, ERC2, GABRG2, HERC1) influencing neuronal excitability by regulating neurotransmitter release and binding, vesicular transport or membrane trafficking at the synapse. Four previously reported loci (SCN1A, SCN2A, ANO3 and 12q21.33) were all confirmed. Collectively, the seven novel and four previously reported loci explained 2.8% of the variance in liability to febrile seizures, and the single nucleotide polymorphism heritability based on all common autosomal single nucleotide polymorphisms was 10.8%. GABRG2, SCN1A and SCN2A are well-established epilepsy genes and, overall, we found positive genetic correlations with epilepsies (rg = 0.39, P = 1.68 × 10-4). Further, we found that higher polygenic risk scores for febrile seizures were associated with epilepsy and with history of hospital admission for febrile seizures. Finally, we found that polygenic risk of febrile seizures was lower in febrile seizure patients with neuropsychiatric disease compared to febrile seizure patients in a general population sample. In conclusion, this largest genetic investigation of febrile seizures to date implicates central fever response genes as well as genes affecting neuronal excitability, including several known epilepsy genes. Further functional and genetic studies based on these findings will provide important insights into the complex pathophysiological processes of seizures with and without fever.
Subject(s)
Epilepsy , Seizures, Febrile , Anoctamins/genetics , Child , Child, Preschool , Epilepsy/genetics , Fever/complications , Fever/genetics , Genome-Wide Association Study , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures, Febrile/geneticsABSTRACT
The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
Subject(s)
Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Monosaccharide Transport Proteins/genetics , Nedd4 Ubiquitin Protein Ligases/genetics , Adolescent , Adult , Blood Pressure , Body Mass Index , Cardiometabolic Risk Factors , Cardiovascular Diseases/pathology , Child , Child, Preschool , Diabetes Mellitus, Type 2/pathology , Female , Genome-Wide Association Study/methods , Humans , Male , Menarche/genetics , Mendelian Randomization Analysis , Waist-Hip RatioABSTRACT
Infantile hypertrophic pyloric stenosis (IHPS) is a disorder of young infants with a population incidence of â¼2/1000 live births, caused by hypertrophy of the pyloric sphincter smooth muscle. Reported genetic loci associated with IHPS explain only a minor proportion of IHPS risk. To identify new risk loci, we carried out a genome-wide meta-analysis on 1395 surgery-confirmed cases and 4438 controls, with replication in a set of 2427 cases and 2524 controls. We identified and replicated six independent genomic loci associated with IHPS risk at genome wide significance (P < 5 × 10-8), including novel associations with two single nucleotide polymorphisms (SNPs). One of these SNPs, rs6736913 [odds ratio (OR) = 2.32; P = 3.0 × 10-15], is a low frequency missense variant in EML4 at 2p21. The second SNP, rs1933683 (OR = 1.34; P = 3.1 × 10-9) is 1 kb downstream of BARX1 at 9q22.32, an essential gene for stomach formation in embryogenesis. Using the genome-wide complex trait analysis method, we estimated the IHPS SNP heritability to be 30%, and using the linkage disequilibrium score regression method, we found support for a previously reported genetic correlation of IHPS with lipid metabolism. By combining the largest collection of IHPS cases to date (3822 cases), with results generalized across populations of different ancestry, we elucidate novel mechanistic avenues of IHPS disease architecture.
Subject(s)
Cell Cycle Proteins/genetics , Homeodomain Proteins/genetics , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/genetics , Pyloric Stenosis, Hypertrophic/genetics , Serine Endopeptidases/genetics , Transcription Factors/genetics , Case-Control Studies , Cohort Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Polymorphism, Single NucleotideABSTRACT
INTRODUCTION: Infantile hypertrophic pyloric stenosis (IHPS) is caused by hypertrophy of the pyloric sphincter muscle. OBJECTIVES: Since previous reports have implicated lipid metabolism, we aimed to (1) investigate associations between IHPS and a wide array of lipid-related metabolites in newborns, and (2) address whether detected differences in metabolite levels were likely to be driven by genetic differences between IHPS cases and controls or by differences in early life feeding patterns. METHODS: We used population-based random selection of IHPS cases and controls born in Denmark between 1997 and 2014. We randomly took dried blood spots of newborns from 267 pairs of IHPS cases and controls matched by sex and day of birth. We used a mixed-effects linear regression model to evaluate associations between 148 metabolites and IHPS in a matched case-control design. RESULTS: The phosphatidylcholine PC(38:4) showed significantly lower levels in IHPS cases (P = 4.68 × 10-8) as did six other correlated metabolites (four phosphatidylcholines, acylcarnitine AC(2:0), and histidine). Associations were driven by 98 case-control pairs born before 2009, when median age at sampling was 6 days. No association was seen in 169 pairs born in 2009 or later, when median age at sampling was 2 days. More IHPS cases than controls had a diagnosis for neonatal difficulty in feeding at breast (P = 6.15 × 10-3). Genetic variants known to be associated with PC(38:4) levels did not associate with IHPS. CONCLUSIONS: We detected lower levels of certain metabolites in IHPS, possibly reflecting different feeding patterns in the first days of life.
Subject(s)
Biomarkers , Genetic Predisposition to Disease , Metabolome , Metabolomics , Pyloric Stenosis, Hypertrophic/genetics , Pyloric Stenosis, Hypertrophic/metabolism , Case-Control Studies , Chromatography, Liquid , Computational Biology , Denmark , Feeding Behavior , Female , Genetic Association Studies , Genetic Variation , Humans , Infant, Newborn , Male , Mass Spectrometry , Metabolomics/methods , Polymorphism, Single Nucleotide , Pyloric Stenosis, Hypertrophic/diagnosisABSTRACT
Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 × 10-8. In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.
Subject(s)
Birth Weight/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Actins/genetics , Adaptor Proteins, Signal Transducing , Alleles , Birth Weight/physiology , Cytochrome P-450 CYP3A/genetics , DNA-Binding Proteins/genetics , Female , Genetic Variation/genetics , Genotype , Germinal Center Kinases , Gestational Age , HMGA2 Protein/genetics , Humans , Intracellular Signaling Peptides and Proteins , Kv1.3 Potassium Channel/genetics , Protein Serine-Threonine Kinases/genetics , Proteins/genetics , Receptor, Melatonin, MT2/genetics , Trans-Activators/genetics , Transcription Factor 7-Like 2 Protein/geneticsABSTRACT
Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Biomarkers/analysis , Dental Caries/genetics , Dentition, Permanent , Genome-Wide Association Study/methods , Phosphoproteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Adolescent , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , PhenotypeABSTRACT
BACKGROUND: Despite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODS: We performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10-8) or an association with suggestive significance (P<1.0×10-6) in the discovery set. RESULTS: In the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONS: In this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and variants at the EBF1, EEFSEC, and AGTR2 loci with preterm birth. Previously established roles of these genes in uterine development, maternal nutrition, and vascular control support their mechanistic involvement. (Funded by the March of Dimes and others.).
Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Gestational Age , Peptide Elongation Factors/genetics , Premature Birth/genetics , Receptor, Angiotensin, Type 2/genetics , Trans-Activators/genetics , Adenylyl Cyclases/genetics , Datasets as Topic , Female , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Pregnancy , Regression Analysis , Wnt4 Protein/genetics , ras Proteins/geneticsABSTRACT
BACKGROUND: Recent studies suggest that infantile hypertrophic pyloric stenosis (IHPS) and congenital heart defects (CHDs) may share some genetic risk factors, but little is known about the co-occurrence of the two conditions in patients. METHODS: Our study cohort included 2,212,756 persons born in Denmark 1977-2013. We identified patients with IHPS and CHD in the National Patient Register. Using log-linear Poisson regression, we estimated the (incidence) rate ratios (RRs) comparing the rate of IHPS among children with a CHD diagnosis (exposed) and the rate among those without such a diagnosis. RESULTS: Twenty-seven thousand three hundred and fifty-seven children in the cohort were diagnosed with CHD out of whom 85 developed IHPS (RR = 2.62, 95% confidence interval (CI) 2.09-3.22]). The results were similar for those with and without other congenital malformations, for preterm and term deliveries, and for both sexes. There was, however, a significant effect of calendar period (P = .003). In the period 1977-1996, the RR of IHPS given a CHD diagnosis was 1.96 (95% CI 1.41-2.64); in the period 1997-2014, the RR was 3.75 (95% CI 2.74-4.99). CONCLUSION: CHD was associated with an increased risk of IHPS. Further research is needed to delineate molecular-level mechanisms that may affect both conditions.
Subject(s)
Heart Defects, Congenital/complications , Pyloric Stenosis, Hypertrophic/complications , Cohort Studies , Denmark/epidemiology , Female , Humans , Incidence , Infant , Infant, Newborn , Male , RegistriesABSTRACT
A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
Subject(s)
Body Mass Index , Genome-Wide Association Study , Obesity/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Loci , Humans , Male , Risk , White People/genetics , Young AdultABSTRACT
BACKGROUND: Inflammation of the tonsils is a normal response to infection, but some individuals experience recurrent, severe tonsillitis and massive hypertrophy of the tonsils in which case surgical removal of the tonsils may be considered. OBJECTIVE: To identify common genetic variants associated with tonsillectomy. METHODS: We used tonsillectomy information from Danish health registers and carried out a genome-wide association study comprising 1464 patients and 12â 019 controls of Northwestern European ancestry, with replication in an independent sample set of 1575 patients and 1367 controls. RESULTS: The variant rs2412971, intronic in HORMAD2 at chromosome 22q12.2, was robustly associated with tonsillectomy (OR=1.22; p=1.48×10-9) and is highly correlated with SNPs previously found to be associated with IgA nephropathy, Crohn's disease (CD) and early onset inflammatory bowel disease (IBD). The risk allele for tonsillectomy corresponded to increased risk of IgA nephropathy and decreased risk of CD and IBD. We further performed lookup analyses of the top SNP for outcomes related to tonsillectomy in the combined discovery and replication sample and found that rs2412971 was associated with acute tonsillitis (OR=1.19; p=7.82×10-4), chronic disease of the tonsils (OR=1.19; p=2.32×10-6) and appendectomy (OR=1.18; p=1.13×10-3). CONCLUSIONS: We identified and replicated a genetic association at 22q12.2 with tonsillectomy. Further functional investigation is required to illuminate whether the molecular mechanisms underlying the genetic association involve general lymphoid hyper-reaction throughout the mucosa-associated lymphoid tissue system.
Subject(s)
Cell Cycle Proteins/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Tonsillectomy , Chromosomes, Human/genetics , Genetic Loci , Humans , Reproducibility of ResultsABSTRACT
Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; ß = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Body Height/genetics , Genetic Association Studies , Genetic Variation , Membrane Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Age Factors , Alleles , Computational Biology , Databases, Genetic , Genotype , Humans , Infant, Newborn , Membrane Proteins/metabolism , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of ResultsABSTRACT
Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91,462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)>5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P<5 × 10(-8)).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee.
Subject(s)
Coffea/metabolism , Feeding Behavior , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Adaptor Proteins, Signal Transducing/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Brain-Derived Neurotrophic Factor/genetics , Cytochrome P-450 CYP1A2/genetics , Humans , PhenotypeABSTRACT
N-acetyltransferase 2 (NAT2) is a well-studied phase II xenobiotic metabolizing enzyme relevant in drug metabolism and cancerogenesis. NAT2 activity is largely determined by genetic polymorphisms in the coding region of the corresponding gene. We investigated NAT2 acetylation status in 1556 individuals from Greenland based on four different single nucleotide polymorphism (SNP) panels and the tagging SNP rs1495741. There was good concordance between the NAT2 status inferred by the different SNP combinations. Overall, the fraction of slow acetylators was low with 17.5 % and varied depending on the degree of Inuit ancestry; in individuals with <50 % Inuit ancestry, we observed more than 25 % slow acetylators reflecting European ancestry. Greenland has a high incidence of tuberculosis, and individual dosing of isoniazid according to NAT2 status has been shown to improve treatment and reduce side effects. Our findings could be a first step in pharmacogenetics-based tuberculosis therapy in Greenland.
Subject(s)
Arylamine N-Acetyltransferase/genetics , Arylamine N-Acetyltransferase/metabolism , Polymorphism, Single Nucleotide , Acetylation , Adolescent , Adult , Aged , Antitubercular Agents/pharmacokinetics , Female , Genetics, Population , Greenland , Humans , Inactivation, Metabolic/genetics , Isoniazid/pharmacokinetics , Male , Middle Aged , White People/genetics , Young AdultABSTRACT
IMPORTANCE: Neonates born to overweight or obese women are larger and at higher risk of birth complications. Many maternal obesity-related traits are observationally associated with birth weight, but the causal nature of these associations is uncertain. OBJECTIVE: To test for genetic evidence of causal associations of maternal body mass index (BMI) and related traits with birth weight. DESIGN, SETTING, AND PARTICIPANTS: Mendelian randomization to test whether maternal BMI and obesity-related traits are potentially causally related to offspring birth weight. Data from 30,487 women in 18 studies were analyzed. Participants were of European ancestry from population- or community-based studies in Europe, North America, or Australia and were part of the Early Growth Genetics Consortium. Live, term, singleton offspring born between 1929 and 2013 were included. EXPOSURES: Genetic scores for BMI, fasting glucose level, type 2 diabetes, systolic blood pressure (SBP), triglyceride level, high-density lipoprotein cholesterol (HDL-C) level, vitamin D status, and adiponectin level. MAIN OUTCOME AND MEASURE: Offspring birth weight from 18 studies. RESULTS: Among the 30,487 newborns the mean birth weight in the various cohorts ranged from 3325 g to 3679 g. The maternal genetic score for BMI was associated with a 2-g (95% CI, 0 to 3 g) higher offspring birth weight per maternal BMI-raising allele (P = .008). The maternal genetic scores for fasting glucose and SBP were also associated with birth weight with effect sizes of 8 g (95% CI, 6 to 10 g) per glucose-raising allele (P = 7 × 10(-14)) and -4 g (95% CI, -6 to -2 g) per SBP-raising allele (P = 1×10(-5)), respectively. A 1-SD ( ≈ 4 points) genetically higher maternal BMI was associated with a 55-g higher offspring birth weight (95% CI, 17 to 93 g). A 1-SD ( ≈ 7.2 mg/dL) genetically higher maternal fasting glucose concentration was associated with 114-g higher offspring birth weight (95% CI, 80 to 147 g). However, a 1-SD ( ≈ 10 mm Hg) genetically higher maternal SBP was associated with a 208-g lower offspring birth weight (95% CI, -394 to -21 g). For BMI and fasting glucose, genetic associations were consistent with the observational associations, but for systolic blood pressure, the genetic and observational associations were in opposite directions. CONCLUSIONS AND RELEVANCE: In this mendelian randomization study, genetically elevated maternal BMI and blood glucose levels were potentially causally associated with higher offspring birth weight, whereas genetically elevated maternal SBP was potentially causally related to lower birth weight. If replicated, these findings may have implications for counseling and managing pregnancies to avoid adverse weight-related birth outcomes.
Subject(s)
Birth Weight/genetics , Blood Glucose/genetics , Body Mass Index , Fasting/blood , Obesity/genetics , Adult , Blood Pressure/genetics , Diabetes Mellitus, Type 2/genetics , Female , Genotype , Humans , Infant, Newborn , Mendelian Randomization Analysis , Obesity/blood , Obesity/ethnology , Polymorphism, Single Nucleotide , Pregnancy , Triglycerides/genetics , White PeopleABSTRACT
Familial clustering studies indicate that breast cancer risk has a substantial genetic component. To identify new breast cancer risk variants, we genotyped approximately 300,000 SNPs in 1,600 Icelandic individuals with breast cancer and 11,563 controls using the Illumina Hap300 platform. We then tested selected SNPs in five replication sample sets. Overall, we studied 4,554 affected individuals and 17,577 controls. Two SNPs consistently associated with breast cancer: approximately 25% of individuals of European descent are homozygous for allele A of rs13387042 on chromosome 2q35 and have an estimated 1.44-fold greater risk than noncarriers, and for allele T of rs3803662 on 16q12, about 7% are homozygous and have a 1.64-fold greater risk. Risk from both alleles was confined to estrogen receptor-positive tumors. At present, no genes have been identified in the linkage disequilibrium block containing rs13387042. rs3803662 is near the 5' end of TNRC9 , a high mobility group chromatin-associated protein whose expression is implicated in breast cancer metastasis to bone.
Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 2/genetics , Genetic Predisposition to Disease , Genetic Variation , Receptors, Estrogen/biosynthesis , Breast Neoplasms/metabolism , Case-Control Studies , Female , HumansABSTRACT
Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of 'age at first tooth' and 'number of teeth' using 5998 and 6609 individuals, respectively, from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2 446 724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of 15 independent loci, with 10 loci reaching genome-wide significance (P < 5 × 10(-8)) for 'age at first tooth' and 11 loci for 'number of teeth'. Together, these associations explain 6.06% of the variation in 'age of first tooth' and 4.76% of the variation in 'number of teeth'. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including an SNP in the protein-coding region of BMP4 (rs17563, P = 9.080 × 10(-17)). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development.
Subject(s)
Body Height/genetics , Face/anatomy & histology , Genetic Loci , Tooth Eruption/genetics , Chromosomes, Human , Dentition , Female , Finland , Genetic Pleiotropy , Genome-Wide Association Study , Humans , Longitudinal Studies , Polymorphism, Single NucleotideABSTRACT
Androgenetic alopecia (AGA) is a highly heritable condition and the most common form of hair loss in humans. Susceptibility loci have been described on the X chromosome and chromosome 20, but these loci explain a minority of its heritable variance. We conducted a large-scale meta-analysis of seven genome-wide association studies for early-onset AGA in 12,806 individuals of European ancestry. While replicating the two AGA loci on the X chromosome and chromosome 20, six novel susceptibility loci reached genome-wide significance (pâ=â2.62×10â»9-1.01×10⻹²). Unexpectedly, we identified a risk allele at 17q21.31 that was recently associated with Parkinson's disease (PD) at a genome-wide significant level. We then tested the association between early-onset AGA and the risk of PD in a cross-sectional analysis of 568 PD cases and 7,664 controls. Early-onset AGA cases had significantly increased odds of subsequent PD (ORâ=â1.28, 95% confidence interval: 1.06-1.55, pâ=â8.9×10⻳). Further, the AGA susceptibility alleles at the 17q21.31 locus are on the H1 haplotype, which is under negative selection in Europeans and has been linked to decreased fertility. Combining the risk alleles of six novel and two established susceptibility loci, we created a genotype risk score and tested its association with AGA in an additional sample. Individuals in the highest risk quartile of a genotype score had an approximately six-fold increased risk of early-onset AGA [odds ratio (OR)â=â5.78, pâ=â1.4×10â»88]. Our results highlight unexpected associations between early-onset AGA, Parkinson's disease, and decreased fertility, providing important insights into the pathophysiology of these conditions.
Subject(s)
Alopecia/genetics , Genome-Wide Association Study , Parkinson Disease/genetics , Adult , Aged , Alleles , Fertility/genetics , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk FactorsABSTRACT
Maternal smoking during pregnancy is associated with low birth weight. Common variation at rs1051730 is robustly associated with smoking quantity and was recently shown to influence smoking cessation during pregnancy, but its influence on birth weight is not clear. We aimed to investigate the association between this variant and birth weight of term, singleton offspring in a well-powered meta-analysis. We stratified 26 241 European origin study participants by smoking status (women who smoked during pregnancy versus women who did not smoke during pregnancy) and, in each stratum, analysed the association between maternal rs1051730 genotype and offspring birth weight. There was evidence of interaction between genotype and smoking (P = 0.007). In women who smoked during pregnancy, each additional smoking-related T-allele was associated with a 20 g [95% confidence interval (95% CI): 4-36 g] lower birth weight (P = 0.014). However, in women who did not smoke during pregnancy, the effect size estimate was 5 g per T-allele (95% CI: -4 to 14 g; P = 0.268). To conclude, smoking status during pregnancy modifies the association between maternal rs1051730 genotype and offspring birth weight. This strengthens the evidence that smoking during pregnancy is causally related to lower offspring birth weight and suggests that population interventions that effectively reduce smoking in pregnant women would result in a reduced prevalence of low birth weight.
Subject(s)
Birth Weight/genetics , Genetic Variation/genetics , Receptors, Nicotinic/genetics , Smoking/adverse effects , Female , Genetic Predisposition to Disease/genetics , Humans , Infant , Nerve Tissue Proteins/genetics , PregnancyABSTRACT
Smoking is a leading cause of preventable death, causing about 5 million premature deaths worldwide each year. Evidence for genetic influence on smoking behaviour and nicotine dependence (ND) has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important to public health. Smoking is the major risk factor for lung cancer (LC) and is one of the main risk factors for peripheral arterial disease (PAD). Here we identify a common variant in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24 with an effect on smoking quantity, ND and the risk of two smoking-related diseases in populations of European descent. The variant has an effect on the number of cigarettes smoked per day in our sample of smokers. The same variant was associated with ND in a previous genome-wide association study that used low-quantity smokers as controls, and with a similar approach we observe a highly significant association with ND. A comparison of cases of LC and PAD with population controls each showed that the variant confers risk of LC and PAD. The findings provide a case study of a gene-environment interaction, highlighting the role of nicotine addiction in the pathology of other serious diseases.