Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 42(15): e112900, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37350545

ABSTRACT

The scaffolding protein angiomotin (AMOT) is indispensable for vertebrate embryonic angiogenesis. Here, we report that AMOT undergoes cleavage in the presence of lysophosphatidic acid (LPA), a lipid growth factor also involved in angiogenesis. AMOT cleavage is mediated by aspartic protease DNA damage-inducible 1 homolog 2 (DDI2), and the process is tightly regulated by a signaling axis including neurofibromin 2 (NF2), tankyrase 1/2 (TNKS1/2), and RING finger protein 146 (RNF146), which induce AMOT membrane localization, poly ADP ribosylation, and ubiquitination, respectively. In both zebrafish and mice, the genetic inactivation of AMOT cleavage regulators leads to defective angiogenesis, and the phenotype is rescued by the overexpression of AMOT-CT, a C-terminal AMOT cleavage product. In either physiological or pathological angiogenesis, AMOT-CT is required for vascular expansion, whereas uncleavable AMOT represses this process. Thus, our work uncovers a signaling pathway that regulates angiogenesis by modulating a cleavage-dependent activation of AMOT.


Subject(s)
Angiomotins , Zebrafish , Animals , Mice , Zebrafish/metabolism , Microfilament Proteins/metabolism , Peptide Hydrolases , Intercellular Signaling Peptides and Proteins/genetics
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542215

ABSTRACT

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Subject(s)
Camellia sinensis , Humans , Introns/genetics , Camellia sinensis/genetics , Genetic Markers , Genome, Plant , Plant Breeding , Tea
3.
Crit Rev Food Sci Nutr ; 63(19): 3653-3663, 2023.
Article in English | MEDLINE | ID: mdl-34669541

ABSTRACT

Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/pharmacology , Diet , Galactans/metabolism , Polysaccharides/pharmacology
4.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37096497

ABSTRACT

The treatment of inflammatory bowel diseases (IBDs) has become a worldwide problem. Intestinal flora plays an important role in the development and progression of IBDs. Various risk factors (psychology, living habits, dietary patterns, environment) influence the structure and composition of the gut microbiota and contribute to the susceptibility to IBDs. This review aims to provide a comprehensive overview on risk factors regulating intestinal microenvironment which was contributed to IBDs. Five protective pathways related to intestinal flora were also discussed. We hope to provide systemic and comprehensive insights of IBDs treatment and to offer theoretical guidance for personalized patients with precision nutrition.

5.
Crit Rev Food Sci Nutr ; 63(27): 8781-8795, 2023.
Article in English | MEDLINE | ID: mdl-35373656

ABSTRACT

Foul-smelling odors are main quality defects of dry-cured ham, which are connected with the excessive degradation of the structural proteins and excessive oxidation of lipids caused by the abnormal growth of spoilage microorganisms, threatening the development of dry-cured ham industry. Characterizing the key microorganisms and metabolites resulted in the spoilage of dry-cured ham, and discussing the relationship between spoilage microorganisms and metabolites are the key aspects to deeply understand the formation mechanism of off-odor in dry-cured ham. Until now, there is no detailed discussion or critical review on the role of spoilage microorganisms in developing the off-odor of dry-cured ham, and the regulation of off-odor and spoilage microorganisms by starter cultures has been not discussed. This review shows the recent achievement in the off-odor formation mechanism of dry-cured ham, and outlines the potential regulation of off-odor defects in dry-cured ham by starter cultures. Results from current research show that the abnormal growth of Lactic acid bacteria, Micrococcaceae, Enterobacteriaceae, Yeasts and Molds plays a key role in developing the off-odor defects of dry-cured ham, while the key spoilage microorganisms of different type hams are discrepant. High profile of aldehydes, acids, sulfur compounds and biogenic amines are responsible for off-odor development in spoiled dry-cured ham. Several starter cultures derived from these species of Staphylococcus, Penicillium, Debaryomyces, Pediococcus and Lactobacillus show a great potential to prevent microbiological hazards and improve flavor quality of dry-cured ham, whereas, the ecology, function and compatibility of these starter cultures with the processing parameters of dry-cured ham need to be further evaluated in the future.


Subject(s)
Meat Products , Penicillium , Pork Meat , Odorants , Penicillium/metabolism , Lactobacillus , Smell , Meat Products/microbiology
6.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063353

ABSTRACT

The application of plant proteins in food systems is largely hindered by their poor foaming or emulsifying properties and low digestibility compared with animal proteins, especially due to the aggregate state with tightly folded structure, slowly adsorbing at the interfaces, generating films with lower mechanical properties, and exposing less cutting sites. Physical fields and pH shifting have certain synergistic effects to efficiently tune the structure and redesign the interfacial layer of plant proteins, further enhancing their foaming or emulsifying properties. The improvement mechanisms mainly include: i) Aggregated plant proteins are depolymerized to form small protein particles and flexible structure is more easily exposed by combination treatment; ii) Particles with appropriate surface properties are quickly adsorbed to the interfacial layer, and then unfolded and rearranged to generate a tightly packed stiff interfacial layer to enhance bubble and emulsion stability; and iii) The unfolding and rearrangement of protein structure at the interface may result in the exposure of more cutting sites of digestive enzymes. This review summarizes the latest research progress on the structural changes, interfacial behaviors, and digestion properties of plant proteins under combined treatment, and elucidates the future development of these modification technologies for plant proteins in the food industry.

7.
Molecules ; 28(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37894554

ABSTRACT

As an indispensable process in the microencapsulation of active substances, emulsion preparation has a significant impact on microencapsulated products. In this study, five primary emulsions of paprika oleoresin (PO, the natural colourant extracted from the fruit peel of Capsicum annuum L.) with different particle sizes (255-901.7 nm) were prepared using three industrialized pulverization-inducing techniques (stirring, ultrasound induction, and high-pressure homogenization). Subsequently, the PO emulsion was microencapsulated via spray drying. The effects of the different induction methods on the physicochemical properties, digestive behaviour, antioxidant activity, and storage stability of PO microencapsulated powder were investigated. The results showed that ultrasound and high-pressure homogenization induction could improve the encapsulation efficiency, solubility, and rehydration capacity of the microcapsules. In vitro digestion studies showed that ultrasound and high-pressure homogenization induction significantly increased the apparent solubility and dissolution of the microcapsules. High-pressure homogenization induction significantly improved the antioxidant capacity of the microcapsules, while high-intensity ultrasound (600 W) induction slowed down the degradation of the microcapsule fats and oils under short-term UV and long-term natural light exposure. Our study showed that ultrasound and high-pressure homogenization equipment could successfully be used to prepare emulsions containing nanoscale capsicum oil resin particles, improve their functional properties, and enhance the oral bioavailability of this bioactive product.


Subject(s)
Capsicum , Capsules/chemistry , Emulsions/chemistry , Plant Extracts , Oils
8.
Molecules ; 28(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838681

ABSTRACT

In this study, the differences in protein profiles between the livers of Shannan Tibetan pigs (SNT), Linzhi Tibetan pigs (LZT) and Jiuzhaigou Tibetan pigs (JZT) were comparatively analyzed by tandem mass spectrometry-labeling quantitative proteomics. A total of 6804 proteins were identified: 6471 were quantified and 1095 were screened as differentially expressed proteins (DEPs). Bioinformatics analysis results show that, compared with JZT livers, up-regulated DEPs in SNT and LZT livers mainly promoted hepatic detoxification through steroid hormone biosynthesis and participated in lipid metabolism to maintain body energy homeostasis, immune response and immune regulation, while down-regulated DEPs were mainly involved in lipid metabolism and immune regulation. Three proteases closely related to hepatic fatty acid oxidation were down-regulated in enzymatic activity, indicating higher levels of lipid oxidation in SNT and LZT livers than in JZT livers. Down-regulation of the expression of ten immunoglobulins suggests that JZT are more susceptible to autoimmune diseases. It is highly likely that these differences in lipid metabolism and immune-related proteins are in response to the ecological environment at different altitudes, and the findings contribute to the understanding of the potential molecular link between Tibetan pig livers and the environment.


Subject(s)
Altitude , Proteomics , Swine , Animals , Proteomics/methods , Tibet , Tandem Mass Spectrometry , Liver/metabolism
9.
Molecules ; 28(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37375157

ABSTRACT

The effects of the four heating intensities (hot-spring egg yolk, HEY; soft-boiled egg yolk, SEY; normal-boiled egg yolk, NEY; and over-boiled egg yolk, OEY) on lipidomes of boiled egg yolks were investigated. The results indicated that four heating intensities had no significant effect on the total abundance of lipids and lipid categories except for bile acids, lysophosphatidylinositol, and lysophosphatidylcholine. However, of all the 767 lipids quantified, the differential abundance of 190 lipids was screened among the egg yolk samples at four heating intensities. Soft-boiling and over-boiling altered the assembly structure of the lipoproteins through thermal denaturation and affected the binding of lipids and apoproteins, resulting in an increase in low-to-medium-abundance triglycerides. The decreased phospholipid and increased lysophospholipid and free fatty acid in HEY and SEY suggests potential hydrolysis of phospholipids under relatively low-intensity heating. Results provide new insights into the effect of heating on the lipid profiles of egg yolk and would support the public's choice of cooking method for egg yolks.


Subject(s)
Chickens , Egg Yolk , Animals , Egg Yolk/chemistry , Heating , Lipidomics , Eggs , Fatty Acids/analysis
10.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049754

ABSTRACT

The Tibetan pig is a characteristic breed of the Qinghai-Tibet Plateau with distinct physiological and meat quality attributes. The liver lipid profile can offer an important perspective to explore the uniqueness of Tibetan pigs. A quantitative comparison of liver lipidomes revealed significant differences in the lipid profiles between Tibetan and Yorkshire pigs raised at different altitudes. The abundance of lipids in the livers of pigs raised at a high altitude was higher than that of pigs raised at a lower altitude, whereas the abundance of lipids in the livers of Yorkshire pigs was higher than that of Tibetan pigs raised at the same altitude. Of the 1101 lipids identified, 323 and 193 differentially abundant lipids (DALs) were identified in the pairwise comparisons of Tibetan and Yorkshire pigs raised at different altitudes, respectively. The DALs of Tibetan pigs consisted mainly of 161 triglycerides, along with several acylcarnitines, represented by carnitine C2:0, and significant changes in the abundance of some phospholipids. The DALs of Yorkshire pigs were more complex, with significant increases in the abundance of triglycerides, cholesteryl esters, and free fatty acids, and decreases in the abundance of some phospholipids. This research provides strong theoretical and data support for the high-quality development of the highland livestock industry.


Subject(s)
Altitude , Lipidomics , Swine , Animals , Tibet , Liver , Lipids
11.
Molecules ; 28(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903581

ABSTRACT

Alzheimer's disease (AD) is to blame for about 60% of dementia cases worldwide. The blood-brain barrier (BBB) prevents many medications for AD from having clinical therapeutic effects that can be used to treat the affected area. Many researchers have turned their attention to cell membrane biomimetic nanoparticles (NPs) to solve this situation. Among them, NPs can extend the half-life of drugs in the body as the "core" of the wrapped drug, and the cell membrane acts as the "shell" of the wrapped NPs to functionalize the NPs, which can further improve the delivery efficiency of nano-drug delivery systems. Researchers are learning that cell membrane biomimetic NPs can circumvent the BBB's restriction, prevent harm to the body's immune system, extend the period that NPs spend in circulation, and have good biocompatibility and cytotoxicity, which increases efficacy of drug release. This review summarized the detailed production process and features of core NPs and further introduced the extraction methods of cell membrane and fusion methods of cell membrane biomimetic NPs. In addition, the targeting peptides for modifying biomimetic NPs to target the BBB to demonstrate the broad prospects of cell membrane biomimetic NPs drug delivery systems were summarized.


Subject(s)
Alzheimer Disease , Nanoparticles , Humans , Alzheimer Disease/drug therapy , Biomimetics , Blood-Brain Barrier/metabolism , Cell Membrane/metabolism , Nanoparticles/therapeutic use
12.
J Sci Food Agric ; 103(8): 3997-4005, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36426805

ABSTRACT

BACKGROUND: The accumulation of lipids in egg yolk during its formation represents a knowledge gap between food science and animal science research to which researchers in either field have not paid sufficient attention. Therefore, the egg yolk samples during different periods of formation (yellow follicle, YF; small hierarchical follicles, SF; and the largest hierarchical follicle, LF) were prepared, and their fatty acid compositions and lipidomes were quantitatively compared. RESULTS: The fatty acid profiles and lipidomes of egg yolks at the three stages of formation were significantly different. The relative content of oleic acid and palmitic acid were increased, but that of the main polyunsaturated fatty acids (linoleic acid, linolenic acid and docosahexaenoic acid) was decreased in the SF period to the LF period. Among the 786 lipid molecular species identified, 150 and 46 differentially abundant lipids (DALs) were identified in the pairwise comparison of YF/SF (early stage of egg yolk formation) and SF/LF (late stage of egg yolk formation), respectively. Triglycerides and diglycerides, represented by TG(14:0/18:1/20:1) and DG(18:1/18:1/0:0), were decreased, whereas free fatty acids (especially free unsaturated fatty acids) were greatly increased during yolk formation. The changes in phospholipids were complex; the relative abundance of phosphatidylcholine [represented by PC(18:0/22:5)] decreased, whereas phosphatidylethanolamine [represented by PE(18:0/18:0)] increased. In addition, the relative abundance of lysophosphatidylcholine [represented by LPC(18:1/0:0)] was increased during egg yolk formation. CONCLUSION: The transport and accumulation of lipids into the egg yolk is dynamically adjusted during its formation, and the transport and timing of different lipid molecular species are different. © 2022 Society of Chemical Industry.


Subject(s)
Chickens , Egg Yolk , Animals , Egg Yolk/chemistry , Lipidomics , Fatty Acids/analysis , Triglycerides/chemistry , Fatty Acids, Unsaturated/analysis , Animal Feed/analysis
13.
J Sci Food Agric ; 103(3): 1442-1453, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36168822

ABSTRACT

BACKGROUND: Protein-polyphenol-polysaccharide ternary complex particles have better emulsion interfacial stability compared to protein-polysaccharide binary complexes. However, knowledge is scarce when it comes to the fabrication of protein-polyphenol-polysaccharide ternary complexes as interfacial stabilizers and the interactions between the three substances. In the present work, ternary complexes were prepared using gelatin, high methoxyl pectin, and epigallocatechin gallate (EGCG) as raw materials. The effect of different influencing factors on the formation process of ternary complexes was investigated by varying different parameters. physicochemical stability, emulsifying properties, and structural characteristics were analyzed. RESULTS: The ternary complex had a smaller particle size (275 nm) and polydispersity index (0.112) when the mass concentration ratio of gelatin to high methoxyl pectin was 9:1, addition of EGCG was 0.05%, pH value was 3.0, and ionic strength was 10 mmol L-1 . Meanwhile, the complex had the highest emulsifying stability index (691.75 min) and emulsifying activity index (22.96 m2 g-1 ). Scanning electron microscopical observation demonstrated that the addition of EGCG promoted the dispersion of ternary complex more uniformly, and effectively reduced the agglomeration phenomenon. The discrepancy in fluorescence intensity suggested that interactions between EGCG and gelatin occurred, which altered the protein spatial conformation of gelatin. Fourier transform infrared spectroscopic analysis elucidated that hydrogen bond interaction was the primary non-covalent interaction between EGCG and gelatin-high methoxyl pectin binary complex. CONCLUSION: The aforementioned results purposed to provide some theoretical reference and basis for the rational design of stable protein-polyphenol-polysaccharide ternary complexes. © 2022 Society of Chemical Industry.


Subject(s)
Catechin , Pectins , Pectins/chemistry , Emulsions/chemistry , Gelatin/chemistry , Polysaccharides , Catechin/chemistry , Polyphenols
14.
J Sci Food Agric ; 103(14): 7187-7198, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37351843

ABSTRACT

BACKGROUND: To understand the mechanism of co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus (SX&SV) on taste quality of dry-cured bacon, physicochemical parameters, microbial community, metabolite compositions and taste attributes were investigated during the processing of dry-cured bacon with Staphylococcus inoculation. The potential correlation between core bacteria and metabolites was evaluated, and the metabolic pathway of key metabolites was further explored. RESULTS: The values of pH, water activity and adhesiveness were significantly lower in SX&SV, and more than 2.56- and 2.15-fold higher values in richness and overall acceptance were found in SX&SV bacon than in CK bacon. The overwhelming advantage of Staphylococcus was confirmed in SX&SV by high-throughput sequencing. Sixty-six metabolites were identified by liquid chromatography-tandem mass spectrometry, and oligopeptides, amino acid derivatives and organic acids were the key components. Pearson correlation demonstrated that the accumulation of oligopeptides, amino acid derivatives and organic acids were positively correlated with high abundance of Staphylococcus. The pathways of purine metabolism, glutathione metabolism and glutamate metabolism were mainly involved in developing the taste quality of SX&SV. CONCLUSION: The co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus enhanced the taste attributes of dry-cured bacon. The present study provides the theoretical reference with respect to regulating the taste quality of fermented meat products by starter cultures of Staphylococcus during manufacture. © 2023 Society of Chemical Industry.


Subject(s)
Meat Products , Pork Meat , Taste , Pork Meat/analysis , Food Microbiology , Chromatography, Liquid , Tandem Mass Spectrometry , Meat Products/analysis , Staphylococcus , Amino Acids , High-Throughput Nucleotide Sequencing , Oligopeptides
15.
Compr Rev Food Sci Food Saf ; 22(1): 587-614, 2023 01.
Article in English | MEDLINE | ID: mdl-36529880

ABSTRACT

Whole flaxseed (flour) as a good source of omega-3 fatty acid and phytochemicals with excellent nutritional and functional attributes has been used to enrich foods for health promotion and disease prevention. However, several limitations and contemporary challenges still impact the development of whole flaxseed (flour)-enriched products on the global market, such as naturally occurring antinutritional factors and entrapment of nutrients within food matrix. Whole flaxseed (flour) with different existing forms could variably alter the techno-functional performance of food matrix, and ultimately affect the edible qualities of fortified food products. The potential interaction mechanism between the subject and object components in fortified products has not been elucidated yet. Hence, in this paper, the physical structure and component changes of flaxseed (flour) by pretreatments coupled with their potential influences on the edible qualities of multiple fortified food products were summarized and analyzed. In addition, several typical food products, including baked, noodle, and dairy products were preferentially selected to investigate the potential influencing mechanisms of flaxseed (flour) on different substrate components. In particular, the altered balance between water absorption of flaxseed protein/gum polysaccharides and the interruption of gluten network, lipid lubrication, lipid-amylose complexes, syneresis, and so forth, were thoroughly elucidated. The overall impact of incorporating whole flaxseed (flour) on the quality and nutritional attributes of fortified food products, coupled with the possible solutions against negative influences are aimed. This paper could provide useful information for expanding the application of whole flaxseed (flour) based on the optimal edible and nutritional properties of fortified food products.


Subject(s)
Fatty Acids, Omega-3 , Flax , Flax/chemistry , Proteins , Flour/analysis , Fatty Acids, Omega-3/chemistry , Quality Control
16.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4039-4045, 2023 Aug.
Article in Zh | MEDLINE | ID: mdl-37802771

ABSTRACT

This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aß deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Mice , Animals , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Arachidonic Acid , Tryptophan , Mice, Inbred C57BL , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Maze Learning , Glycerophospholipids , Disease Models, Animal , Amyloid beta-Peptides/metabolism
17.
Crit Rev Food Sci Nutr ; 62(11): 2855-2871, 2022.
Article in English | MEDLINE | ID: mdl-33325758

ABSTRACT

Cereals account for a large proportion of the human diet and are an important source of protein. The preparation of cereal protein peptides is a good way to utilize these proteins. Cereal protein peptides have good application potential as antioxidant, antibacterial, anti-inflammatory and anticancer compounds, in lowering blood pressure, controlling blood sugar, and inhibiting thrombosis. This article reviews the literature on the functional properties, mechanisms of action, and applications of cereal protein peptides in the food industry with two perspectives, and summarizes the methods for their preparation and identification. The biologically active peptides derived from different grain proteins have varied main functional properties, which may be related to the differences in the amino acid composition and protein types of different grains. On this basis, the structure-activity relationship of cereal protein peptides was discussed. The advancement of identification technology makes the integration of bioinformatics and bioactive peptide research closer. Bioinformatics by combination of online database, computer simulation and experimental verification is helpful to in-deep study the structure-activity relationship of biologically active peptides, and improve efficiency in the process of obtaining target peptides with less cost. In addition, the application of cereal protein peptides in the food industry is also discussed.


Subject(s)
Edible Grain , Peptides , Antioxidants/analysis , Computer Simulation , Diet , Edible Grain/chemistry , Humans , Peptides/chemistry
18.
Crit Rev Food Sci Nutr ; 62(31): 8646-8674, 2022.
Article in English | MEDLINE | ID: mdl-34058920

ABSTRACT

The zebrafish is a species of freshwater fish, popular in aquariums and laboratories. Several advantageous features have facilitated zebrafish to be extensively utilized as a valuable vertebrate model in the lab. It has been well-recognized that natural products possess multiple health benefits for humans. With the increasing demand for natural products in the development of functional foods, nutraceuticals, and natural cosmetics, the zebrafish has emerged as an unprecedented tool for rapidly and economically screening and identifying safe and effective substances from natural products. This review first summarized the key factors for the management of zebrafish in the laboratory, followed by highlighting the current progress on the establishment and applications of zebrafish models in the bioactivity evaluation of natural products. In addition, the zebrafish models used for assessing the potential toxicity or health risks of natural products were involved as well. Overall, this review indicates that zebrafish are promising animal models for the bioactivity and safety evaluation of natural products, and zebrafish models can accelerate the discovery of novel natural products with potential health functions.


Subject(s)
Biological Products , Zebrafish , Animals , Humans , Biological Products/pharmacology , Models, Animal , Functional Food , Dietary Supplements
19.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35822206

ABSTRACT

Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human gut. Accumulating evidence suggests that dietary fiber plays a crucial role in host health, yet most studies have focused on how the dietary fiber affects health through gut Bacteroides. More recently, gut Firmicutes have been found to possess many genes responsible for fermenting dietary fiber, and could also interact with the intestinal mucosa and thereby contribute to homeostasis. Consequently, the relationship between dietary fiber and Firmicutes is of interest, as well as the role of Firmicutes in host health. In this review, we summarize the current knowledge regarding the molecular mechanism of dietary fiber degradation by gut Firmicutes and explain the communication pathway of the dietary fiber-Firmicutes-host axis, and the beneficial effects of dietary fiber-induced Firmicutes and their metabolites on health. A better understanding of the dialogue sustained by the dietary fiber-Firmicutes axis and the host could provide new insights into probiotic therapy and novel dietary interventions aimed at increasing the abundance of Firmicutes (such as Faecalibacterium, Lactobacillus, and Roseburia) to promote health.


Dietary fiber-induced gut Firmicutes and their metabolites exhibit relevant health-promoting functions.Most of dietary fiber have a great effect on gut Firmicutes.Mechanisms of dietary fiber uptake by gut Firmicutes are outlined.Mechanisms of dietary fiber- gut Firmicutes-host interactions require more investigation for the development of dietary fiber in food production and host health.

20.
Crit Rev Food Sci Nutr ; 62(4): 917-934, 2022.
Article in English | MEDLINE | ID: mdl-33030031

ABSTRACT

Sweet tea (Lithocarpus polystachyus Rehd.) has been consumed as herbal tea to prevent and manage diabetes for a long time. Recent studies indicate that sweet tea is rich in a variety of bioactive compounds, especially a class of nonclassical flavonoids, dihydrochalcones. In order to provide a better understanding of sweet tea and its main dihydrochalcones on human health, this review mainly summarizes related literature in the recent ten years, with the potential molecular mechanisms emphatically discussed. Phlorizin, phloretin, and trilobatin, three natural sweeteners, are the main dihydrochalcones in sweet tea. In addition, sweet tea and its dihydrochalcones exhibit plenty of health benefits, such as antioxidant, anti-inflammatory, antimicrobial, cardioprotective, hepatoprotective, antidiabetic, and anticancer effects, which are associated with the regulation of different molecular targets and signaling pathways. Therefore, sweet tea, as a rare natural source of dihydrochalcones, can be processed and developed into nutraceuticals or functional foods, with the potential application in the prevention and management of certain chronic diseases.


Subject(s)
Chalcones , Fagaceae , Chalcones/pharmacology , Humans , Hypoglycemic Agents/pharmacology , Tea
SELECTION OF CITATIONS
SEARCH DETAIL