Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Med Genet ; 61(6): 553-565, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38341271

ABSTRACT

BACKGROUND: The association between the TDRD6 variants and human infertility remains unclear, as only one homozygous missense variant of TDRD6 was found to be associated with oligoasthenoteratozoospermia (OAT). METHODS: Whole-exome sequencing and Sanger sequencing were employed to identify potential pathogenic variants of TDRD6 in infertile men. Histology, immunofluorescence, immunoblotting and ultrastructural analyses were conducted to clarify the structural and functional abnormalities of sperm in mutated patients. Tdrd6-knockout mice were generated using the CRISPR-Cas9 system. Total RNA-seq and single-cell RNA-seq (scRNA-seq) analyses were used to elucidate the underlying molecular mechanisms, followed by validation through quantitative RT-PCR and immunostaining. Intracytoplasmic sperm injection (ICSI) was also used to assess the efficacy of clinical treatment. RESULTS: Bi-allelic TDRD6 variants were identified in five unrelated Chinese individuals with OAT, including homozygous loss-of-function variants in two consanguineous families. Notably, besides reduced concentrations and impaired motility, a significant occurrence of acrosomal hypoplasia was detected in multiple spermatozoa among five patients. Using the Tdrd6-deficient mice, we further elucidate the pivotal role of TDRD6 in spermiogenesis and acrosome identified. In addition, the mislocalisation of crucial chromatoid body components DDX4 (MVH) and UPF1 was also observed in round spermatids from patients harbouring TDRD6 variants. ScRNA-seq analysis of germ cells from a patient with TDRD6 variants revealed that TDRD6 regulates mRNA metabolism processes involved in spermatid differentiation and cytoplasmic translation. CONCLUSION: Our findings strongly suggest that TDRD6 plays a conserved role in spermiogenesis and confirms the causal relationship between TDRD6 variants and human OAT. Additionally, this study highlights the unfavourable ICSI outcomes in individuals with bi-allelic TDRD6 variants, providing insights for potential clinical treatment strategies.


Subject(s)
Alleles , Asthenozoospermia , Exome Sequencing , Mice, Knockout , Spermatogenesis , Adult , Animals , Humans , Male , Mice , Acrosome/pathology , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Oligospermia/genetics , Oligospermia/pathology , Pedigree , Sperm Injections, Intracytoplasmic , Spermatogenesis/genetics , Spermatozoa/pathology , Spermatozoa/metabolism
2.
Clin Genet ; 105(1): 99-105, 2024 01.
Article in English | MEDLINE | ID: mdl-37715646

ABSTRACT

Non-obstructive azoospermia (NOA) is the most severe form of human male infertility, and the genetic causes of NOA with meiotic arrest remain largely unclear. In this study, we identified novel compound heterozygous MEIOB variants (c.814C > T: p.R272X and c.976G > A: p.A326T) and a previously undescribed homozygous non-canonical splicing variant of MEIOB (c.528 + 3A > C) in two NOA-affected individuals from two irrelevant Chinese families. MEIOB missense variant (p.A326T) significantly reduced protein abundance and nonsense variant (p.R272X) produced a truncated protein. Both of two variants impaired the MEIOB-SPATA22 interaction. The MEIOB non-canonical splicing variant resulted in whole Exon 6 skipping by minigene assay, which was predicted to produce a frameshift truncated protein (p.S111Rfs*32). Histological and immunostaining analysis indicated that both patients exhibited a similar phenotype as we previously reported in Meiob mutant mice, that is, absence of spermatids in seminiferous tubules and meiotic arrest. Our study identified three novel pathogenic variants of MEIOB in NOA patients, extending the mutation spectrum of the MEIOB and highlighting the contribution of meiotic recombination related genes in human fertility.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Mice , Animals , Azoospermia/genetics , Azoospermia/pathology , Infertility, Male/genetics , Mutation/genetics , Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Meiosis/genetics , DNA-Binding Proteins/genetics
3.
Phys Rev Lett ; 132(15): 156301, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683008

ABSTRACT

A valley filter capable of generating a valley-polarized current is a crucial element in valleytronics, yet its implementation remains challenging. Here, we propose a valley filter made of a graphene bilayer which exhibits a 1D moiré pattern in the overlapping region of the two layers controlled by heterostrain. In the presence of a lattice modulation between layers, electrons propagating in one layer can have valley-dependent dissipation due to valley asymmetric interlayer coupling, thus giving rise to a valley-polarized current. Such a process can be described by an effective non-Hermitian theory, in which the valley filter is driven by a valley-resolved non-Hermitian skin effect. Nearly 100% valley polarization can be achieved within a wide parameter range and the functionality of the valley filter is electrically tunable. The non-Hermitian topological scenario of the valley filter ensures high tolerance against imperfections such as disorder and edge defects. Our work opens a new route for efficient and robust valley filters while significantly relaxing the stringent implementation requirements.

4.
Prev Med ; 179: 107844, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176446

ABSTRACT

OBJECTIVE: A variety of unhealthy sleep behaviors have been shown to be associated with an increased risk of urologic cancers. However, little is known about the association between the overall sleep patterns and urologic cancers. To prospectively investigate the associations between a healthy sleep pattern and the risks of urologic cancers, including bladder cancer (BCa) and renal cell carcinoma (RCC). METHODS: In this prospective cohort study, 377,144 participants free of cancer at baseline were recruited from the UK Biobank. Data on sleep behaviors were collected through questionnaires at recruitment. The incident urologic cancer cases were determined through linkage to national cancer and death registries. We established a healthy sleep score according to five sleep traits (sleep duration, chronotype, insomnia, snoring, and daytime sleepiness). Cox proportional hazard regression models were used to calculate the adjusted hazard ratios and 95% confidence intervals to assess the relationship between the healthy sleep score and the risk of urologic cancers. RESULTS: During a median of ≥9 years of follow-up, we identified 1986 incident urologic cancer cases, including 1272 BCa cases and 706 RCC cases. Compared with the participants with a poor sleep pattern (score of 0-2), the multivariable-adjusted hazard ratio and 95% confidence interval were 0.85 (0.75 to 0.96) for urologic cancers, 0.80 (0.68 to 0.93) for BCa, and 0.91 (0.74, 1.12) for RCC, respectively, for those with the healthier sleep pattern (score of 4-5). CONCLUSION: Our results indicate that a healthy sleep pattern is associated with lower risks of urologic cancers.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Prospective Studies , Carcinoma, Renal Cell/complications , Sleep , Snoring/complications , Kidney Neoplasms/epidemiology , Kidney Neoplasms/complications , Risk Factors
5.
Mar Drugs ; 22(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786596

ABSTRACT

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Subject(s)
Cnidarian Venoms , Hydroxybenzoates , Skin , Animals , Hydroxybenzoates/pharmacology , Mice , Cnidarian Venoms/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Gentisates/pharmacology , Nematocyst/drug effects , Disease Models, Animal , Cytokines/metabolism
6.
J Assist Reprod Genet ; 41(5): 1307-1317, 2024 May.
Article in English | MEDLINE | ID: mdl-38430325

ABSTRACT

PURPOSE: To identify the genetic cause of a cryptorchidism patient carrying a non-canonical splicing variant highlighted by SPCards platform in RXFP2 and to provide a comprehensive overview of RXFP2 variants with cryptorchidism correlation. METHODS: We identified a homozygous non-canonical splicing variant by whole-exome sequencing and Sanger sequencing in a case with cryptorchidism and non-obstructive azoospermia (NOA). As the pathogenicity of this non-canonical splicing variant remained unclear, we initially utilized the SPCards platform to predict its pathogenicity. Subsequently, we employed a minigene splicing assay to further evaluate the influence of the identified splicing variant. Microdissection testicular sperm extraction (micro-TESE) combined with intracytoplasmic sperm injection (ICSI) was performed. PubMed and Human Genome Variant Database (HGMD) were queried to search for RXFP2 variants. RESULTS: We identified a homozygous non-canonical splicing variant (NM_130806: c.1376-12A > G) in RXFP2, and confirmed this variant caused aberrant splicing of exons 15 and 16 of the RXFP2 gene: 11 bases were added in front of exon 16, leading to an abnormal transcript initiation and a frameshift. Fortunately, the patient successfully obtained his biological offspring through micro-TESE combined with ICSI. Four cryptorchidism-associated variants in RXFP2 from 90 patients with cryptorchidism were identified through a literature search in PubMed and HGMD, with different inheritance patterns. CONCLUSION: This is the first cryptorchidism case carrying a novel causative non-canonical splicing RXFP2 variant. The combined approach of micro-TESE and ICSI contributed to an optimal pregnancy outcome. Our literature review demonstrated that RXFP2 variants caused cryptorchidism in a recessive inheritance pattern, rather than a dominant pattern.


Subject(s)
Cryptorchidism , Pregnancy Outcome , Receptors, G-Protein-Coupled , Sperm Injections, Intracytoplasmic , Humans , Cryptorchidism/genetics , Cryptorchidism/pathology , Male , Sperm Injections, Intracytoplasmic/methods , Pregnancy , Female , Receptors, G-Protein-Coupled/genetics , Pregnancy Outcome/genetics , Adult , Azoospermia/genetics , Azoospermia/pathology , Sperm Retrieval , Exome Sequencing , RNA Splicing/genetics
7.
Genomics ; 115(6): 110709, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37739021

ABSTRACT

Recent studies on marine organisms have made use of third-generation sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). While these specialized bioinformatics tools have different algorithmic designs and performance capabilities, they offer scalability and can be applied to various datasets. We investigated the effectiveness of PacBio and ONT RNA sequencing methods in identifying the venom of the jellyfish species Nemopilema nomurai. We conducted a detailed analysis of the sequencing data from both methods, focusing on key characteristics such as CD, alternative splicing, long-chain noncoding RNA, simple sequence repeat, transcription factor, and functional transcript annotation. Our findings indicate that ONT generally produced higher raw data quality in the transcriptome analysis, while PacBio generated longer read lengths. PacBio was found to be superior in identifying CDs and long-chain noncoding RNA, whereas ONT was more cost-effective for predicting alternative splicing events, simple sequence repeats, and transcription factors. Based on these results, we conclude that PacBio is the most specific and sensitive method for identifying venom components, while ONT is the most cost-effective method for studying venogenesis, cnidocyst (venom gland) development, and transcription of virulence genes in jellyfish. Our study has implications for future sequencing technologies in marine jellyfish, and highlights the power of full-length transcriptome analysis in discovering potential therapeutic targets for jellyfish dermatitis.


Subject(s)
Cnidarian Venoms , Scyphozoa , Animals , RNA , Sequence Analysis, RNA , RNA, Untranslated , High-Throughput Nucleotide Sequencing/methods
8.
Int J Mol Sci ; 25(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38791314

ABSTRACT

Obesity is associated with alterations in lipid metabolism and gut microbiota dysbiosis. This study investigated the effects of puerarin, a bioactive isoflavone, on lipid metabolism disorders and gut microbiota in high-fat diet (HFD)-induced obese mice. Supplementation with puerarin reduced plasma alanine aminotransferase, liver triglyceride, liver free fatty acid (FFA), and improved gut microbiota dysbiosis in obese mice. Puerarin's beneficial metabolic effects were attenuated when farnesoid X receptor (FXR) was antagonized, suggesting FXR-mediated mechanisms. In hepatocytes, puerarin ameliorated high FFA-induced sterol regulatory element-binding protein (SREBP) 1 signaling, inflammation, and mitochondrial dysfunction in an FXR-dependent manner. In obese mice, puerarin reduced liver damage, regulated hepatic lipogenesis, decreased inflammation, improved mitochondrial function, and modulated mitophagy and ubiquitin-proteasome pathways, but was less effective in FXR knockout mice. Puerarin upregulated hepatic expression of FXR, bile salt export pump (BSEP), and downregulated cytochrome P450 7A1 (CYP7A1) and sodium taurocholate transporter (NTCP), indicating modulation of bile acid synthesis and transport. Puerarin also restored gut microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of Clostridium celatum and Akkermansia muciniphila. This study demonstrates that puerarin effectively ameliorates metabolic disturbances and gut microbiota dysbiosis in obese mice, predominantly through FXR-dependent pathways. These findings underscore puerarin's potential as a therapeutic agent for managing obesity and enhancing gut health, highlighting its dual role in improving metabolic functions and modulating microbial communities.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Isoflavones , Liver , Obesity , Receptors, Cytoplasmic and Nuclear , Animals , Isoflavones/pharmacology , Gastrointestinal Microbiome/drug effects , Diet, High-Fat/adverse effects , Receptors, Cytoplasmic and Nuclear/metabolism , Mice , Obesity/metabolism , Obesity/drug therapy , Liver/metabolism , Liver/drug effects , Male , Dysbiosis , Mice, Obese , Mice, Inbred C57BL , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Mice, Knockout , Organic Anion Transporters, Sodium-Dependent/metabolism , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/metabolism , Symporters/genetics , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Akkermansia
9.
Phys Chem Chem Phys ; 25(29): 19492-19500, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37448277

ABSTRACT

This work reports the refinement of nanoporous copper (NPC) ligaments by introducing the sodium dodecyl sulfate (SDS) surfactant in the dealloying process. The Al80Cu20 (at%) alloy precursor is chemically dealloyed in a mixed solution of NaOH and SDS surfactant, producing NPC with a hierarchical microstructure. Micron-scaled skeletons that build up higher level networks consist of geometrically similar nano-scaled bi-continuous ligament-pore networks at the lower level. It has been found that the size of the ligaments in the lower level networks reduces from ∼32 nm to ∼24 nm with increasing SDS concentration to 1 mM. Further increasing the SDS concentration to 5 mM only leads to a slight ligament size decrease to ∼21 nm. Remarkably, nano-sized cones are formed on the lower level network surface in the dealloying solution containing 1 mM SDS, and the cone number greatly rises when the SDS concentration increases to 5 mM. The surface diffusivity of Cu adatoms is evaluated based on the experimental data, and the refinement of the ligament as well as the formation of cones are associated with the decreased surface diffusivity and the retarded Cu adatom motions with the addition of SDS. Quantum chemical calculations and molecular dynamics simulations are performed to model the adsorption behavior of SDS. It has been found that the SDS-substrate interaction increases with the number of SDS molecules before SDS reaches saturation.

10.
Sensors (Basel) ; 23(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37448068

ABSTRACT

Pipeline magnetic flux leakage inspection is widely used in the evaluation of material defect detection due to its advantages of having no coupling agent and easy implementation. The quantification of defect size is an important part of magnetic flux leakage testing. Defects of different geometrical dimensions produce signal waveforms with different characteristics after excitation. The key to achieving defect quantification is an accurate description of the relationship between the magnetic leakage signal and the size. In this paper, a calculation model for solving the defect leakage field based on the non-uniform magnetic charge distribution of magnetic dipoles is developed. Based on the traditional uniformly distributed magnetic charge model, the magnetic charge density distribution model is improved. Considering the variation of magnetic charge density with different depth positions, the triaxial signal characteristics of the defect are obtained by vector synthesis calculation. Simultaneous design of excitation pulling experiment. The leakage field distribution of rectangular defects with different geometries is analyzed. The experimental results show that the change in defect size will have an impact on the area of the defect leakage field distribution, and the larger the length and wider the width of the defect, the more sensitive the impact on the leakage field distribution. The solution model is consistent with the experimentally obtained leakage signal distribution law, and the model is a practical guide by which to improve the quality of defect evaluation.


Subject(s)
Magnetic Phenomena , Physical Phenomena
11.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850454

ABSTRACT

In order to solve the problem of the quantification of detection signals in the magnetic flux leakage (MFL) of defective in-service oil and gas pipelines, a non-uniform magnetic charge model was established based on magnetic effects. The distribution patterns of magnetic charges under different stresses were analyzed. The influences of the elastic load and plastic deformation on the characteristic values of MFL signals were quantitatively assessed. The experimental results showed that the magnetic charge density was large at the edges of the defect and small at the center, and approximately decreased linearly with increasing stress. The eigenvalues of the axial and radial components of the MFL signals were compared, and it was found that the eigenvalues of the radial component exhibited a larger decline rate and were more sensitive to stress. With the increase in the plastic deformation, the characteristic values of the MFL signals initially decreased and then increased, and there was an inflection point. The location of the inflection point was associated with the magnetostriction coefficient. Compared with the uniform magnetic charge model, the accuracy of the axial and radial components of the MFL signals in the elastic stage of the improved magnetic charge model rose by 17% and 16%, respectively. The accuracy of the axial and radial components of the MFL signals were elevated by 9.15% and 9%, respectively, in the plastic stage.

12.
Sensors (Basel) ; 23(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36772185

ABSTRACT

Weak magnetic detection technology is an effective method to identify stress-induced damage to ferromagnetic materials, and it especially possesses great application potential in long-distance oil and gas pipeline weld crack detection. In the process of pipeline operation, due to internal pressure and external loads, local stress concentration may be generated, and partial stress concentration may lead to local cracks and expansion of the pipe. In order to improve the accuracy of magnetic signal analysis for ferromagnetic materials under internal pressure, the causes of magnetic signal generation at pipeline welds were analyzed from a microscopic perspective. The distributions of magnetic signals at pipeline welds, weld cracks, and base metal cracks under different internal pressures were numerically analyzed. The variation trends of magnetic signal characteristics, such as peak values of axial and radial components, gradient K, maximum gradient Kmax, and gradient energy factor S(K), were analyzed. In addition, experiments were carried out to verify the numerical data. It was revealed that with the elevation of internal pressure, the peak values of the axial and radial components, gradient K, maximum gradient Kmax, and gradient energy factor S(K) linearly increased. However, the magnitude and average change of S(K) were larger, which can more directly indicate variations of magnetic signals. The radial growth rate νy of S(K) was 3.24% higher than the axial growth rate νx, demonstrating that the radial component of the magnetic signal was more sensitive to variations of stress. This study provided a theoretical and experimental basis for detection of stress-induced damage to long-distance oil and gas pipelines.

13.
Nano Lett ; 22(13): 5427-5433, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35759348

ABSTRACT

The regulation of reactive oxygen species (ROS)-sensitive calcium (Ca2+) channels is of great significance in the treatment of tumors. Here, a simple ROS generation system is developed to activate ROS-sensitive ion channels for enhancing calcium-cascade-mediated tumor cell death under near-infrared (NIR) light irradiation. Upon irradiation with an 808 nm laser, a low-lethality amount of ROS facilitates plasmid transient potential receptor melastatin-2 (pTRPM2) gene release via cleavage of the Se-Se bonds, which contributed to enhancing the expression of TRPM2 in tumor cells. Meanwhile, ROS could potently activate TRPM2 for Ca2+ influx to inhibit early autophagy and to further induce intracellular ROS production, which ultimately led to cell death in TRPM2 expressing tumor cells. Both in vitro and in vivo data show that nanoparticles have an excellent therapeutic effect on cancer upon NIR light. This work presents a simple modality based on NIR light to remotely control the ROS-sensitive ion channel for cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , TRPM Cation Channels , Calcium/metabolism , Calcium Channels/genetics , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/therapy , Reactive Oxygen Species/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
14.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240438

ABSTRACT

Human noroviruses (HuNoV) are major causes of acute gastroenteritis around the world. The high mutation rate and recombination potential of noroviruses are significant challenges in studying the genetic diversity and evolution pattern of novel strains. In this review, we describe recent advances in the development of technologies for not only the detection but also the analysis of complete genome sequences of noroviruses and the future prospects of detection methods for tracing the evolution and genetic diversity of human noroviruses. The mechanisms of HuNoV infection and the development of antiviral drugs have been hampered by failure to develop the infectious virus in a cell model. However, recent studies have demonstrated the potential of reverse genetics for the recovery and generation of infectious viral particles, suggesting the utility of this genetics-based system as an alternative for studying the mechanisms of viral infection, such as cell entry and replication.


Subject(s)
Caliciviridae Infections , Norovirus , Humans , Norovirus/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Caliciviridae Infections/genetics
15.
J Bacteriol ; 204(2): e0043221, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34898263

ABSTRACT

The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The nasD operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the nasD operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for nasD transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating nasD transcription. Although nasD has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σA and αCTD and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD participates in nasD transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. IMPORTANCE A significant number of ResD-controlled genes have been identified, and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the nasD operon, the promoter-proximal and -distal ResD-binding subsites play important roles in nasD activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors, including the ubiquitous response regulators of two-component regulatory systems, particularly in Gram-positive bacteria.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Directed RNA Polymerases/genetics , Nitrite Reductases/genetics , Transcription Factors/genetics , Transcriptional Activation , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial , Nitrite Reductases/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism
16.
Hum Mutat ; 43(3): 434-443, 2022 03.
Article in English | MEDLINE | ID: mdl-34923715

ABSTRACT

To investigate the genetic cause of male infertility characterized by severe asthenozoospermia, two unrelated infertile men with severe asthenozoospermia from nonconsanguineous Chinese families were enrolled, and whole exome sequencing were performed to identify the potential pathogenic mutations. Novel compound heterozygous mutations (NK062 III-1: c.290T>C, p.Leu97Pro; c.1664delT, p.Ile555Thrfs*11/NK038 III-1: c.212G>T, p.Arg71Leu; c.290T>C, p.Leu97Pro) in SLC26A8 were identified. All mutations were inherited from their heterozygous parents and are predicted to be disease-causing by sorts intolerant from tolerant, PolyPhen-2, Mutation Taster, and Combined Annotation Dependent Depletion. In silico mutant SLC26A8 models predict that mutations p.Leu97Pro and p.Arg71Leu cause changes in the α-helix, which may result in functional defects in the protein. Notably, heterozygous male carriers of each mutation in both families were able to reproduce naturally, which is inconsistent with previous reports. Ultrastructural analysis revealed severe asthenozoospermia associated with absence of the mitochondrial sheath and annulus in spermatozoa from both the probands, and both structural defects were verified by HSP60 and SEPT4 immunofluorescence analysis. SLC26A8 levels were significantly reduced in spermatozoa from patients harboring biallelic SLC26A8 mutations, and both patients achieved good prognosis following intracytoplasmic sperm injection. Our findings indicate that mutations in SLC26A8 could manifest as a recessive genetic cause of severe asthenozoospermia and male infertility.


Subject(s)
Antiporters , Asthenozoospermia , Infertility, Male , Sulfate Transporters , Antiporters/genetics , Asthenozoospermia/genetics , Asthenozoospermia/pathology , Humans , Infertility, Male/genetics , Male , Mutation , Spermatozoa/pathology , Sulfate Transporters/genetics , Exome Sequencing
17.
Hum Mutat ; 43(12): 2079-2090, 2022 12.
Article in English | MEDLINE | ID: mdl-36135717

ABSTRACT

Asthenoteratozoospermia is the primary cause of infertility in humans. However, the genetic etiology remains largely unknown for those suffering from severe asthenoteratozoospermia caused by thin midpiece defects. In this study, we identified two biallelic loss-of-function variants of SEPTIN4 (previously SEPT4) (Patient 1: c.A721T, p.R241* and Patient 2: c.C205T, p.R69*) in two unrelated individuals from two consanguineous Chinese families. SEPT4 is a conserved annulus protein that is critical for male fertility and the structural integrity of the sperm midpiece in mice. SEPT4 mutations disrupted the formation of SEPT-based annulus and localization of SEPTIN subunits in sperms from patients. The ultrastructural analysis demonstrated striking thin midpiece spermatozoa defects owing to annulus loss and disorganized mitochondrial sheath. Immunofluorescence and immunoblotting analyses of the mitochondrial sheath proteins TOMM20 and HSP60 further indicated that the distribution and abundance of mitochondria were impaired in men harboring biallelic SEPT4 variants. Additionally, we found that the precise localization of SLC26A8, a testis-specific anion transporter that colocalizes with SEPT4 at the sperm annulus, was missing without SEPT4. Moreover, the patient achieved a good pregnancy outcome following intracytoplasmic sperm injection. Overall, our study demonstrated for the first time that SEPT4 variants that induced thin midpiece spermatozoa defects were directly associated with human asthenoteratozoospermia.


Subject(s)
Asthenozoospermia , Infertility, Male , Septins , Female , Humans , Male , Pregnancy , Asthenozoospermia/genetics , Asthenozoospermia/metabolism , Infertility, Male/genetics , Proteins/metabolism , Semen/metabolism , Sperm Tail/metabolism , Sperm Tail/ultrastructure , Spermatozoa , Septins/genetics
18.
Clin Genet ; 102(2): 130-135, 2022 08.
Article in English | MEDLINE | ID: mdl-35543642

ABSTRACT

Male infertility is an increasingly serious health problem affecting couples of reproductive age. Mutations in axoneme-associated genes cause male infertility. Dynein arm proteins are essential in sustaining normal axonemes and promote flagellar motility. However, the function of DNAH7 in male fertility in vivo remains unclear. Herein, we showed that DNAH7 disruption in humans results in male infertility, which was characterised by multiple morphological abnormalities of sperm flagella. The axoneme structure of the sperm from a DNAH7-deficient patient revealed the loss of inner dynein arms. Moreover, the mitochondria of the sperm flagella detached and dispersed outside the axoneme, leading to abnormalities in the mitochondrial sheath in the mid-piece region. Live birth was achieved via intracytoplasmic sperm injection. Thus, DNAH7 is critical for axoneme and mitochondrial development in human sperm. These findings further clarify the spectrum of DNAH7 biology and provide new insights for diagnosing infertility and treating patients harbouring DNAH7 mutations.


Subject(s)
Dyneins/genetics , Infertility, Male , Dyneins/metabolism , Humans , Infertility, Male/genetics , Loss of Function Mutation , Male , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Semen/metabolism , Sperm Tail/metabolism , Spermatozoa/metabolism
19.
Phys Rev Lett ; 129(12): 120507, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36179172

ABSTRACT

The identification of electronic entanglement in solids remains elusive so far, which is owed to the difficulty of implementing spinor-selective beam splitters with tunable polarization direction. Here, we propose to overcome this obstacle by producing and detecting a particular type of entanglement encoded in the Nambu spinor or electron-hole components of quasiparticles excited in quantum Hall edge states. Because of the opposite charge of electrons and holes, the detection of the Nambu spinor translates into a charge-current measurement, which eliminates the need for beam splitters and assures a high detection rate. Conveniently, the spinor correlation function at fixed effective polarizations derives from a single current-noise measurement, with the polarization directions of the detector easily adjusted by coupling the edge states to a voltage gate and a superconductor, both having been realized in experiments. We show that the violation of Bell inequality occurs in a large parameter region. Our Letter opens a new route for probing quasiparticle entanglement in solid-state physics exempt from traditional beam splitters.

20.
Phys Rev Lett ; 129(23): 231601, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36563211

ABSTRACT

In this Letter, we show that Jackiw-Teitelboim gravity can be naturally realized in the Karch-Randall braneworld. Notably the role of the dilaton in Jackiw-Teitelboim gravity is played by the radion in a suitably orbifolded version of the setup. In the classical entanglement entropy calculation, there is an apparent degeneracy of Ryu-Takayanagi surfaces. We demonstrate how quantum fluctuations of the radion/dilaton resolve this would-be classical puzzle regarding entanglement wedge reconstruction.

SELECTION OF CITATIONS
SEARCH DETAIL