Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Proc Natl Acad Sci U S A ; 110(46): E4325-34, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24167280

ABSTRACT

The Sleeping Beauty (SB) transposon mutagenesis screen is a powerful tool to facilitate the discovery of cancer genes that drive tumorigenesis in mouse models. In this study, we sought to identify genes that functionally cooperate with sonic hedgehog signaling to initiate medulloblastoma (MB), a tumor of the cerebellum. By combining SB mutagenesis with Patched1 heterozygous mice (Ptch1(lacZ/+)), we observed an increased frequency of MB and decreased tumor-free survival compared with Ptch1(lacZ/+) controls. From an analysis of 85 tumors, we identified 77 common insertion sites that map to 56 genes potentially driving increased tumorigenesis. The common insertion site genes identified in the mutagenesis screen were mapped to human orthologs, which were used to select probes and corresponding expression data from an independent set of previously described human MB samples, and surprisingly were capable of accurately clustering known molecular subgroups of MB, thereby defining common regulatory networks underlying all forms of MB irrespective of subgroup. We performed a network analysis to discover the likely mechanisms of action of subnetworks and used an in vivo model to confirm a role for a highly ranked candidate gene, Nfia, in promoting MB formation. Our analysis implicates candidate cancer genes in the deregulation of apoptosis and translational elongation, and reveals a strong signature of transcriptional regulation that will have broad impact on expression programs in MB. These networks provide functional insights into the complex biology of human MB and identify potential avenues for intervention common to all clinical subgroups.


Subject(s)
Gene Regulatory Networks/genetics , Hedgehog Proteins/metabolism , Medulloblastoma/genetics , NFI Transcription Factors/genetics , Signal Transduction/genetics , Animals , Apoptosis/genetics , Chromosome Mapping , Computational Biology , DNA Primers/genetics , DNA Transposable Elements/genetics , Hedgehog Proteins/genetics , Humans , Mice , Mice, Transgenic , Mutagenesis, Insertional/methods , Patched Receptors , Patched-1 Receptor , Polymerase Chain Reaction , Receptors, Cell Surface/genetics , Sequence Analysis, DNA , Transposases/genetics
2.
Dev Dyn ; 244(3): 227-38, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25156673

ABSTRACT

Nuclear factor one (NFI) transcription factors are a group of site-specific DNA-binding proteins that are emerging as critical regulators of stem cell biology. During development NFIs promote the production of differentiated progeny at the expense of stem cell fate, with Nfi null mice exhibiting defects such as severely delayed brain and lung maturation, skeletomuscular defects and renal abnormalities, phenotypes that are often consistent with patients with congenital Nfi mutations. Intriguingly, recent research suggests that in adult tissues NFI factors play a qualitatively different role than during development, with NFIs serving to promote the survival and maintenance of slow-cycling adult stem cell populations rather than their differentiation. Here we review the role of NFI factors in development, largely focusing on their role as promoters of stem cell differentiation, and attempt to reconcile this with the emerging role of NFIs in adult stem cell niches.


Subject(s)
Adult Stem Cells/metabolism , Cell Differentiation/physiology , NFI Transcription Factors/metabolism , Adult Stem Cells/cytology , Animals , Cell Survival/physiology , Humans , Mice , Mice, Mutant Strains , NFI Transcription Factors/genetics
3.
Front Oncol ; 13: 1101522, 2023.
Article in English | MEDLINE | ID: mdl-36776301

ABSTRACT

Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.

4.
Genome Med ; 15(1): 29, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127652

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is a malignant tumour of the cerebellum which can be classified into four major subgroups based on gene expression and genomic features. Single-cell transcriptome studies have defined the cellular states underlying each MB subgroup; however, the spatial organisation of these diverse cell states and how this impacts response to therapy remains to be determined. METHODS: Here, we used spatially resolved transcriptomics to define the cellular diversity within a sonic hedgehog (SHH) patient-derived model of MB and show that cells specific to a transcriptional state or spatial location are pivotal for CDK4/6 inhibitor, Palbociclib, treatment response. We integrated spatial gene expression with histological annotation and single-cell gene expression data from MB, developing an analysis strategy to spatially map cell type responses within the hybrid system of human and mouse cells and their interface within an intact brain tumour section. RESULTS: We distinguish neoplastic and non-neoplastic cells within tumours and from the surrounding cerebellar tissue, further refining pathological annotation. We identify a regional response to Palbociclib, with reduced proliferation and induced neuronal differentiation in both treated tumours. Additionally, we resolve at a cellular resolution a distinct tumour interface where the tumour contacts neighbouring mouse brain tissue consisting of abundant astrocytes and microglia and continues to proliferate despite Palbociclib treatment. CONCLUSIONS: Our data highlight the power of using spatial transcriptomics to characterise the response of a tumour to a targeted therapy and provide further insights into the molecular and cellular basis underlying the response and resistance to CDK4/6 inhibitors in SHH MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Humans , Mice , Cell Differentiation , Cerebellar Neoplasms/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Medulloblastoma/metabolism , Transcriptome , Cyclin-Dependent Kinase 6/antagonists & inhibitors
5.
Genome Med ; 13(1): 19, 2021 02 06.
Article in English | MEDLINE | ID: mdl-33549134

ABSTRACT

BACKGROUND: Basal cell carcinoma (BCC) of the skin is the most common form of human cancer, with more than 90% of tumours presenting with clear genetic activation of the Hedgehog pathway. However, polygenic risk factors affecting mechanisms such as DNA repair and cell cycle checkpoints or which modulate the tumour microenvironment or host immune system play significant roles in determining whether genetic mutations culminate in BCC development. We set out to define background genetic factors that play a role in influencing BCC susceptibility via promoting or suppressing the effects of oncogenic drivers of BCC. METHODS: We performed genome-wide association studies (GWAS) on 17,416 cases and 375,455 controls. We subsequently performed statistical analysis by integrating data from population-based genetic studies of multi-omics data, including blood- and skin-specific expression quantitative trait loci and methylation quantitative trait loci, thereby defining a list of functionally relevant candidate BCC susceptibility genes from our GWAS loci. We also constructed a local GWAS functional interaction network (consisting of GWAS nearest genes) and another functional interaction network, consisting specifically of candidate BCC susceptibility genes. RESULTS: A total of 71 GWAS loci and 46 functional candidate BCC susceptibility genes were identified. Increased risk of BCC was associated with the decreased expression of 26 susceptibility genes and increased expression of 20 susceptibility genes. Pathway analysis of the functional candidate gene regulatory network revealed strong enrichment for cell cycle, cell death, and immune regulation processes, with a global enrichment of genes and proteins linked to TReg cell biology. CONCLUSIONS: Our genome-wide association analyses and functional interaction network analysis reveal an enrichment of risk variants that function in an immunosuppressive regulatory network, likely hindering cancer immune surveillance and effective antitumour immunity.


Subject(s)
Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/immunology , Gene Regulatory Networks , Genetic Predisposition to Disease , Skin Neoplasms/genetics , Skin Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Biological Specimen Banks , Carcinoma, Basal Cell/blood , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Organ Specificity/genetics , Protein Interaction Maps/genetics , Quantitative Trait Loci/genetics , Skin Neoplasms/blood
6.
Mol Cancer Res ; 19(11): 1831-1839, 2021 11.
Article in English | MEDLINE | ID: mdl-34330843

ABSTRACT

Medulloblastoma is the most common malignant pediatric brain tumor and there is an urgent need for molecularly targeted and subgroup-specific therapies. The stem cell factor SOX9, has been proposed as a potential therapeutic target for the treatment of Sonic Hedgehog medulloblastoma (SHH-MB) subgroup tumors, given its role as a downstream target of Hedgehog signaling and in functionally promoting SHH-MB metastasis and treatment resistance. However, the functional requirement for SOX9 in the genesis of medulloblastoma remains to be determined. Here we report a previously undocumented level of SOX9 expression exclusively in proliferating granule cell precursors (GCP) of the postnatal mouse cerebellum, which function as the medulloblastoma-initiating cells of SHH-MBs. Wild-type GCPs express comparatively lower levels of SOX9 than neural stem cells and mature astroglia and SOX9low GCP-like tumor cells constitute the bulk of both infant (Math1Cre:Ptch1lox/lox ) and adult (Ptch1LacZ/+ ) SHH-MB mouse models. Human medulloblastoma single-cell RNA data analyses reveal three distinct SOX9 populations present in SHH-MB and noticeably absent in other medulloblastoma subgroups: SOX9 + MATH1 + (GCP), SOX9 + GFAP + (astrocytes) and SOX9 + MATH1 + GFAP + (potential tumor-derived astrocytes). To functionally address whether SOX9 is required as a downstream effector of Hedgehog signaling in medulloblastoma tumor cells, we ablated Sox9 using a Math1Cre model system. Surprisingly, targeted ablation of Sox9 in GCPs (Math1Cre:Sox9lox/lox ) revealed no overt phenotype and loss of Sox9 in SHH-MB (Math1Cre:Ptch1lox/lox;Sox9lox/lox ) does not affect tumor formation. IMPLICATIONS: Despite preclinical data indicating SOX9 plays a key role in SHH-MB biology, our data argue against SOX9 as a viable therapeutic target.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Hedgehog Proteins/metabolism , Medulloblastoma/genetics , SOX9 Transcription Factor/metabolism , Animals , Cell Proliferation , Disease Models, Animal , Humans , Medulloblastoma/physiopathology , Mice , Signal Transduction
7.
Neuro Oncol ; 23(5): 732-742, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33258962

ABSTRACT

BACKGROUND: Novel targeted therapies for children diagnosed with medulloblastoma (MB), the most common malignant pediatric brain tumor, are urgently required. A major hurdle in the development of effective therapies is the impaired delivery of systemic therapies to tumor cells due to a specialized endothelial blood-brain barrier (BBB). Accordingly, the integrity of the BBB is an essential consideration in any preclinical model used for assessing novel therapeutics. This study sought to assess the functional integrity of the BBB in several preclinical mouse models of MB. METHODS: Dynamic contrast enhancement magnetic resonance imaging (MRI) was used to evaluate blood-brain-tumor barrier (BBTB) permeability in a murine genetically engineered mouse model (GEMM) of Sonic Hedgehog (SHH) MB, patient-derived orthotopic xenograft models of MB (SHH and Gp3), and orthotopic transplantation of GEMM tumor cells, enabling a comparison of the direct effects of transplantation on the integrity of the BBTB. Immunofluorescence analysis was performed to compare the structural and subcellular features of tumor-associated vasculature in all models. RESULTS: Contrast enhancement was observed in all transplantation models of MB. No contrast enhancement was observed in the GEMM despite significant tumor burden. Cellular analysis of BBTB integrity revealed aberrancies in all transplantation models, correlating to the varying levels of BBTB permeability observed by MRI in these models. CONCLUSIONS: These results highlight functional differences in the integrity of the BBTB and tumor vessel phenotype between commonly utilized preclinical models of MB, with important implications for the preclinical evaluation of novel therapeutic agents for MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Blood-Brain Barrier , Cell Line, Tumor , Child , Hedgehog Proteins , Heterografts , Humans , Mice
8.
Genome Med ; 13(1): 103, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34154646

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects. METHODS: We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB. RESULTS: Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB. CONCLUSIONS: Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cerebellar Neoplasms/etiology , Drug Development , Medulloblastoma/etiology , Pharmacogenetics/methods , Animals , Antineoplastic Agents/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Computational Biology/methods , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Mice , Mice, Transgenic , Protein Interaction Mapping , Protein Interaction Maps , Systems Biology/methods , Transcriptome , Xenograft Model Antitumor Assays
9.
Nat Commun ; 12(1): 2678, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976153

ABSTRACT

Intellectual disability (ID) and autism spectrum disorder (ASD) are the most common neurodevelopmental disorders and are characterized by substantial impairment in intellectual and adaptive functioning, with their genetic and molecular basis remaining largely unknown. Here, we identify biallelic variants in the gene encoding one of the Elongator complex subunits, ELP2, in patients with ID and ASD. Modelling the variants in mice recapitulates the patient features, with brain imaging and tractography analysis revealing microcephaly, loss of white matter tract integrity and an aberrant functional connectome. We show that the Elp2 mutations negatively impact the activity of the complex and its function in translation via tRNA modification. Further, we elucidate that the mutations perturb protein homeostasis leading to impaired neurogenesis, myelin loss and neurodegeneration. Collectively, our data demonstrate an unexpected role for tRNA modification in the pathogenesis of monogenic ID and ASD and define Elp2 as a key regulator of brain development.


Subject(s)
Autism Spectrum Disorder/genetics , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Neurodevelopmental Disorders/genetics , Transcriptome/genetics , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Disease Models, Animal , Epigenesis, Genetic , Grooming/physiology , Humans , Intellectual Disability/metabolism , Intellectual Disability/physiopathology , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/physiopathology , Phenotype , Sf9 Cells , Spodoptera
10.
Neurooncol Adv ; 2(1): vdaa030, 2020.
Article in English | MEDLINE | ID: mdl-32642689

ABSTRACT

BACKGROUND: High-grade glioma (HGG) remains a recalcitrant clinical problem despite many decades of research. A major challenge in improving prognosis is the inability of current therapeutic strategies to address a clinically significant burden of infiltrating tumor cells that extend beyond the margins of the primary tumor mass. Such cells cannot be surgically excised nor efficiently targeted by radiation therapy. Therapeutic targeting of this tumor cell population is significantly hampered by the presence of an intact blood-brain barrier (BBB). In this study, we performed a preclinical investigation of the efficiency of MR-guided Focused Ultrasound (FUS) to temporarily disrupt the BBB to allow selective delivery of a tumor-targeting antibody to infiltrating tumor. METHODS: Structural MRI, dynamic-contrast enhancement MRI, and histology were used to fully characterize the MR-enhancing properties of a patient-derived xenograft (PDX) orthotopic mouse model of HGG and to develop a reproducible, robust model of nonenhancing HGG. PET-CT imaging techniques were then used to evaluate the efficacy of FUS to increase 89Zr-radiolabeled antibody concentration in nonenhancing HGG regions and adjacent non-targeted tumor tissue. RESULTS: The PDX mouse model of HGG has a significant tumor burden lying behind an intact BBB. Increased antibody uptake in nonenhancing tumor regions is directly proportional to the FUS-targeted volume. FUS locally increased antibody uptake in FUS-targeted regions of the tumor with an intact BBB, while leaving untargeted regions unaffected. CONCLUSIONS: FUS exposure successfully allowed temporary BBB disruption, localized to specifically targeted, nonenhancing, infiltrating tumor regions and delivery of a systemically administered antibody was significantly increased.

11.
Theranostics ; 10(14): 6361-6371, 2020.
Article in English | MEDLINE | ID: mdl-32483457

ABSTRACT

The clinical translation of new nanoparticle-based therapies for high-grade glioma (HGG) remains extremely poor. This has partly been due to the lack of suitable preclinical mouse models capable of replicating the complex characteristics of recurrent HGG (rHGG), namely the heterogeneous structural and functional characteristics of the blood-brain barrier (BBB). The goal of this study is to compare the characteristics of the tumor BBB of rHGG with two different mouse models of HGG, the ubiquitously used U87 cell line xenograft model and a patient-derived cell line WK1 xenograft model, in order to assess their suitability for nanomedicine research. Method: Structural MRI was used to assess the extent of BBB opening in mouse models with a fully developed tumor, and dynamic contrast enhanced MRI was used to obtain values of BBB permeability in contrast enhancing tumor. H&E and immunofluorescence staining were used to validate results obtained from the in vivo imaging studies. Results: The extent of BBB disruption and permeability in the contrast enhancing tumor was significantly higher in the U87 model than in rHGG. These values in the WK1 model are similar to those of rHGG. The U87 model is not infiltrative, has an entirely abnormal and leaky vasculature and it is not of glial origin. The WK1 model infiltrates into the non-neoplastic brain parenchyma, it has both regions with intact BBB and regions with leaky BBB and remains of glial origin. Conclusion: The WK1 mouse model more accurately reproduces the extent of BBB disruption, the level of BBB permeability and the histopathological characteristics found in rHGG patients than the U87 mouse model, and is therefore a more clinically relevant model for preclinical evaluations of emerging nanoparticle-based therapies for HGG.


Subject(s)
Blood-Brain Barrier/physiopathology , Glioma/pathology , Nanomedicine/methods , Nanoparticles/administration & dosage , Animals , Blood-Brain Barrier/chemistry , Blood-Brain Barrier/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Capillary Permeability , Cell Line, Tumor , Drug Delivery Systems/methods , Drug Evaluation, Preclinical/methods , Female , Glioma/drug therapy , Glioma/metabolism , Humans , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred NOD , Mice, SCID , Nanoparticles/chemistry , Xenograft Model Antitumor Assays
12.
Nat Commun ; 9(1): 3195, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30097576

ABSTRACT

Cerebellar ataxias are severe neurodegenerative disorders with an early onset and progressive and inexorable course of the disease. Here, we report a single point mutation in the gene encoding Elongator complex subunit 6 causing Purkinje neuron degeneration and an ataxia-like phenotype in the mutant wobbly mouse. This mutation destabilizes the complex and compromises its function in translation regulation, leading to protein misfolding, proteotoxic stress, and eventual neuronal death. In addition, we show that substantial microgliosis is triggered by the NLRP3 inflammasome pathway in the cerebellum and that blocking NLRP3 function in vivo significantly delays neuronal degeneration and the onset of ataxia in mutant animals. Our data provide a mechanistic insight into the pathophysiology of a cerebellar ataxia caused by an Elongator mutation, substantiating the increasing body of evidence that alterations of this complex are broadly implicated in the onset of a number of diverse neurological disorders.


Subject(s)
Ataxia/genetics , Behavior, Animal , Histone Acetyltransferases/genetics , Mutation/genetics , Nerve Degeneration/genetics , Animals , Ataxia/complications , Base Sequence , Caspase 1/metabolism , Female , Furans , Gliosis/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Histone Acetyltransferases/metabolism , Indenes , Inflammasomes/metabolism , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Neurologic Mutants , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Models, Molecular , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nerve Degeneration/complications , Phenotype , Protein Aggregates/drug effects , Protein Folding/drug effects , Protein Stability/drug effects , Purkinje Cells/pathology , Sulfonamides , Sulfones/pharmacology , Vacuoles/drug effects , Vacuoles/metabolism , Vacuoles/ultrastructure
13.
Clin Cancer Res ; 23(19): 5802-5813, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28637687

ABSTRACT

Purpose: Bioinformatics analysis followed by in vivo studies in patient-derived xenograft (PDX) models were used to identify and validate CDK 4/6 inhibition as an effective therapeutic strategy for medulloblastoma, particularly group 3 MYC-amplified tumors that have the worst clinical prognosis.Experimental Design: A protein interaction network derived from a Sleeping Beauty mutagenesis model of medulloblastoma was used to identify potential novel therapeutic targets. The top hit from this analysis was validated in vivo using PDX models of medulloblastoma implanted subcutaneously in the flank and orthotopically in the cerebellum of mice.Results: Informatics analysis identified the CDK4/6/CYCLIN D/RB pathway as a novel "druggable" pathway for multiple subgroups of medulloblastoma. Palbociclib, a highly specific inhibitor of CDK4/6, was found to inhibit RB phosphorylation and cause G1 arrest in PDX models of medulloblastoma. The drug caused rapid regression of Sonic hedgehog (SHH) and MYC-amplified group 3 medulloblastoma subcutaneous tumors and provided a highly significant survival advantage to mice bearing MYC-amplified intracranial tumors.Conclusions: Inhibition of CDK4/6 is potentially a highly effective strategy for the treatment of SHH and MYC-amplified group 3 medulloblastoma. Clin Cancer Res; 23(19); 5802-13. ©2017 AACR.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Medulloblastoma/drug therapy , Molecular Targeted Therapy , Piperazines/administration & dosage , Pyridines/administration & dosage , Animals , Cell Proliferation/drug effects , Cyclin D/genetics , Cyclin-Dependent Kinase 4/genetics , Disease Models, Animal , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/pathology , Mice , Phosphorylation , Prognosis , Protein Interaction Maps/drug effects , Protein Interaction Maps/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/genetics , Xenograft Model Antitumor Assays
14.
BMC Res Notes ; 5: 507, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980291

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is the most common type of malignant childhood brain tumour. Although deregulated microRNA (miRNA) expression has been linked to MB pathogenesis, the selection of appropriate candidate endogenous control (EC) reference genes for MB miRNA expression profiling studies has not been systematically addressed. In this study we utilised reverse transcriptase quantitative PCR (RT-qPCR) to identify the most appropriate EC reference genes for the accurate normalisation of miRNA expression data in primary human MB specimens and neural stem cells. RESULTS: Expression profiling of 662 miRNAs and six small nuclear/ nucleolar RNAs in primary human MB specimens, two CD133+ neural stem cell (NSC) populations and two CD133- neural progenitor cell (NPC) populations was performed using TaqMan low-density array (TLDA) cards. Minimal intra-card variability for candidate EC reference gene replicates was observed, however significant inter-card variability was identified between replicates present on both TLDA cards A and B. A panel of 18 potentially suitable EC reference genes was identified for the normalisation of miRNA expression on TLDA cards. These candidates were not significantly differentially expressed between CD133+ NSCs/ CD133- NPCs and primary MB specimens. Of the six sn/snoRNA EC reference genes recommended by the manufacturer, only RNU44 was uniformly expressed between primary MB specimens and CD133+ NSC/CD133- NPC populations (P = 0.709; FC = 1.02). The suitability of candidate EC reference genes was assessed using geNorm and NormFinder software, with hsa-miR-301a and hsa-miR-339-5p found to be the most uniformly expressed EC reference genes on TLDA card A and hsa-miR-425* and RNU24 for TLDA card B. CONCLUSIONS: A panel of 18 potential EC reference genes that were not significantly differentially expressed between CD133+ NSCs/ CD133- NPCs and primary human MB specimens was identified. The top ranked EC reference genes described here should be validated in a larger cohort of specimens to verify their utility as controls for the normalisation of RT-qPCR data generated in MB miRNA expression studies. Importantly, inter-card variability observed between replicates of certain candidate EC reference genes has major implications for the accurate normalisation of miRNA expression data obtained using the miRNA TLDA platform.


Subject(s)
Biomarkers, Tumor/genetics , Cerebellar Neoplasms/genetics , Gene Expression Profiling/methods , Medulloblastoma/genetics , MicroRNAs/metabolism , Neural Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , AC133 Antigen , Analysis of Variance , Antigens, CD/metabolism , Calibration , Cell Line , Child , Child, Preschool , Female , Gene Expression Profiling/standards , Glycoproteins/metabolism , Humans , Infant , Male , Neural Stem Cells/immunology , Peptides/metabolism , Quality Control , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/standards , Software , Spheroids, Cellular
15.
PLoS One ; 6(9): e23935, 2011.
Article in English | MEDLINE | ID: mdl-21931624

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs). Hence, microRNA (miRNA) expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133- neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01). The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future investigations aimed at characterizing the role of specific miRNAs in MB pathogenesis.


Subject(s)
Gene Expression Profiling , Medulloblastoma/genetics , MicroRNAs/genetics , Neural Stem Cells/metabolism , AC133 Antigen , Antigens, CD/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Child , Child, Preschool , Chromosomes, Human, Pair 14/genetics , Cluster Analysis , Female , Gene Regulatory Networks/genetics , Glycoproteins/metabolism , Humans , Infant , Male , Medulloblastoma/pathology , MicroRNAs/metabolism , Peptides/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL