Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Am J Hum Genet ; 108(3): 400-410, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33571421

ABSTRACT

We generated an online brain pQTL resource for 7,376 proteins through the analysis of genetic and proteomic data derived from post-mortem samples of the dorsolateral prefrontal cortex of 330 older adults. The identified pQTLs tend to be non-synonymous variation, are over-represented among variants associated with brain diseases, and replicate well (77%) in an independent brain dataset. Comparison to a large study of brain eQTLs revealed that about 75% of pQTLs are also eQTLs. In contrast, about 40% of eQTLs were identified as pQTLs. These results are consistent with lower pQTL mapping power and greater evolutionary constraint on protein abundance. The latter is additionally supported by observations of pQTLs with large effects' tending to be rare, deleterious, and associated with proteins that have evidence for fewer protein-protein interactions. Mediation analyses using matched transcriptomic and proteomic data provided additional evidence that pQTL effects are often, but not always, mediated by mRNA. Specifically, we identified roughly 1.6 times more mRNA-mediated pQTLs than mRNA-independent pQTLs (550 versus 341). Our pQTL resource provides insight into the functional consequences of genetic variation in the human brain and a basis for novel investigations of genetics and disease.


Subject(s)
Brain/metabolism , Proteome/genetics , Quantitative Trait Loci/genetics , Transcriptome/genetics , Autopsy , Female , Gene Expression Regulation/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Humans , Male , Proteomics , RNA, Messenger/genetics
2.
Mol Psychiatry ; 27(7): 3075-3084, 2022 07.
Article in English | MEDLINE | ID: mdl-35449297

ABSTRACT

Genome-wide association studies (GWAS) have identified several risk loci for post-traumatic stress disorder (PTSD); however, how they confer PTSD risk remains unclear. We aimed to identify genes that confer PTSD risk through their effects on brain protein abundance to provide new insights into PTSD pathogenesis. To that end, we integrated human brain proteomes with PTSD GWAS results to perform a proteome-wide association study (PWAS) of PTSD, followed by Mendelian randomization, using a discovery and confirmatory study design. Brain proteomes (N = 525) were profiled from the dorsolateral prefrontal cortex using mass spectrometry. The Million Veteran Program (MVP) PTSD GWAS (n = 186,689) was used for the discovery PWAS, and the Psychiatric Genomics Consortium PTSD GWAS (n = 174,659) was used for the confirmatory PWAS. To understand whether genes identified at the protein-level were also evident at the transcript-level, we performed a transcriptome-wide association study (TWAS) using human brain transcriptomes (N = 888) and the MVP PTSD GWAS results. We identified 11 genes that contribute to PTSD pathogenesis via their respective cis-regulated brain protein abundance. Seven of 11 genes (64%) replicated in the confirmatory PWAS and 4 of 11 also had their cis-regulated brain mRNA levels associated with PTSD. High confidence level was assigned to 9 of 11 genes after considering evidence from the confirmatory PWAS and TWAS. Most of the identified genes are expressed in other PTSD-relevant brain regions and several are preferentially expressed in excitatory neurons, astrocytes, and oligodendrocyte precursor cells. These genes are novel, promising targets for mechanistic and therapeutic studies to find new treatments for PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Veterans , Brain , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide/genetics , Proteome/genetics , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/psychology , Transcriptome , Veterans/psychology
3.
Alzheimers Dement ; 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35727298

ABSTRACT

INTRODUCTION: Despite an established link between depression and higher Alzheimer's disease (AD) risk, it is unclear whether the conditions share pathophysiology. Here, we investigated whether depression manifesting after age 50 is associated with a genetic predisposition to AD. METHODS: From the population-based Health and Retirement Study cohort with biennial assessments of depressive symptoms and cognitive performance, we studied 6656 individuals of European ancestry with whole-genome genotyping. Polygenic risk scores (PRSs) for AD were estimated and examined for an association with depression in cognitively normal participants using regression modeling. RESULTS: Among cognitively normal participants, those with a higher AD PRS were more likely to experience depression after age 50 after accounting for the effects of genetic predisposition to depression, sex, age, and education. DISCUSSION: Genetic predisposition to AD may be one of the factors contributing to the pathogenesis of mid-life depression. Whether there is a shared genetic basis between mid-life depression and AD merits further study.

4.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924431

ABSTRACT

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Atomoxetine Hydrochloride , Proteomics , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Proteomics/methods , Apolipoprotein E4/genetics , Atomoxetine Hydrochloride/therapeutic use , Atomoxetine Hydrochloride/pharmacology , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Male , Aged , Female , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism
5.
Nat Med ; 29(9): 2224-2232, 2023 09.
Article in English | MEDLINE | ID: mdl-37653343

ABSTRACT

Most complex human traits differ by sex, but we have limited insight into the underlying mechanisms. Here, we investigated the influence of biological sex on protein expression and its genetic regulation in 1,277 human brain proteomes. We found that 13.2% (1,354) of brain proteins had sex-differentiated abundance and 1.5% (150) of proteins had sex-biased protein quantitative trait loci (sb-pQTLs). Among genes with sex-biased expression, we found 67% concordance between sex-differentiated protein and transcript levels; however, sex effects on the genetic regulation of expression were more evident at the protein level. Considering 24 psychiatric, neurologic and brain morphologic traits, we found that an average of 25% of their putatively causal genes had sex-differentiated protein abundance and 12 putatively causal proteins had sb-pQTLs. Furthermore, integrating sex-specific pQTLs with sex-stratified genome-wide association studies of six psychiatric and neurologic conditions, we uncovered another 23 proteins contributing to these traits in one sex but not the other. Together, these findings begin to provide insights into mechanisms underlying sex differences in brain protein expression and disease.


Subject(s)
Genome-Wide Association Study , Sex Characteristics , Female , Male , Humans , Brain , Multifactorial Inheritance , Phenotype
6.
medRxiv ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961720

ABSTRACT

Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

7.
Nat Commun ; 13(1): 4314, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35882878

ABSTRACT

Several common psychiatric and neurodegenerative diseases share epidemiologic risk; however, whether they share pathophysiology is unclear and is the focus of our investigation. Using 25 GWAS results and LD score regression, we find eight significant genetic correlations between psychiatric and neurodegenerative diseases. We integrate the GWAS results with human brain transcriptomes (n = 888) and proteomes (n = 722) to identify cis- and trans- transcripts and proteins that are consistent with a pleiotropic or causal role in each disease, referred to as causal proteins for brevity. Within each disease group, we find many distinct and shared causal proteins. Remarkably, 30% (13 of 42) of the neurodegenerative disease causal proteins are shared with psychiatric disorders. Furthermore, we find 2.6-fold more protein-protein interactions among the psychiatric and neurodegenerative causal proteins than expected by chance. Together, our findings suggest these psychiatric and neurodegenerative diseases have shared genetic and molecular pathophysiology, which has important ramifications for early treatment and therapeutic development.


Subject(s)
Mental Disorders , Neurodegenerative Diseases , Brain , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Mental Disorders/genetics , Neurodegenerative Diseases/genetics , Polymorphism, Single Nucleotide
8.
Biol Psychiatry ; 92(1): 25-33, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35177243

ABSTRACT

BACKGROUND: Depression has been associated with a higher risk of Alzheimer's disease (AD) in several prospective studies; however, mechanisms underlying this association remain unclear. METHODS: We examined genetic correlation between depression and AD using linkage disequilibrium score regression. We then tested for evidence of causality between depression and AD using Mendelian randomization and genome-wide association study results. Subsequently, cis and trans quantitative trait locus analyses for the depression genome-wide association study signals were performed to resolve the genetic signals to specific DNA methylation sites, brain transcripts, and proteins. These transcripts and proteins were then examined for associations with AD and its endophenotypes. Finally, the associations between depression polygenic risk score and AD endophenotypes were examined. RESULTS: We detected a significant genetic correlation between depression and AD, suggesting that they have a shared genetic basis. Furthermore, we found that depression had a causal role in AD through Mendelian randomization but did not find evidence for a causal role of AD on depression. Moreover, we identified 75 brain transcripts and 28 brain proteins regulated by the depression genome-wide association study signals through quantitative trait locus analyses. Of these, 46 transcripts and seven proteins were associated with rates of cognitive decline over time, AD pathologies, and AD diagnosis in two separate cohorts, thus implicating them in AD. In addition, we found that a higher depression polygenic risk score was associated with a faster decline of episodic memory over time. CONCLUSIONS: Depression appears to have a causal role in AD, and this causal relationship is likely driven, in part, by the 53 brain transcripts and proteins identified in this study.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/pathology , Depression/complications , Depression/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis/methods , Polymorphism, Single Nucleotide/genetics , Prospective Studies
9.
Nat Neurosci ; 25(2): 213-225, 2022 02.
Article in English | MEDLINE | ID: mdl-35115731

ABSTRACT

The biological processes that are disrupted in the Alzheimer's disease (AD) brain remain incompletely understood. In this study, we analyzed the proteomes of more than 1,000 brain tissues to reveal new AD-related protein co-expression modules that were highly preserved across cohorts and brain regions. Nearly half of the protein co-expression modules, including modules significantly altered in AD, were not observed in RNA networks from the same cohorts and brain regions, highlighting the proteopathic nature of AD. Two such AD-associated modules unique to the proteomic network included a module related to MAPK signaling and metabolism and a module related to the matrisome. The matrisome module was influenced by the APOE ε4 allele but was not related to the rate of cognitive decline after adjustment for neuropathology. By contrast, the MAPK/metabolism module was strongly associated with the rate of cognitive decline. Disease-associated modules unique to the proteome are sources of promising therapeutic targets and biomarkers for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Brain/metabolism , Cognitive Dysfunction/pathology , Humans , Proteome , Proteomics , RNA/metabolism
10.
Genes (Basel) ; 12(6)2021 05 26.
Article in English | MEDLINE | ID: mdl-34073619

ABSTRACT

Cerebral atherosclerosis is a leading cause of stroke and an important contributor to dementia. Yet little is known about its genetic basis. To examine the association of common single nucleotide polymorphisms with cerebral atherosclerosis severity, we conducted a genomewide association study (GWAS) using data collected as part of two community-based cohort studies in the United States, the Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP). Both studies enroll older individuals and exclude participants with signs of dementia at baseline. From our analysis of 1325 participants of European ancestry who had genotype and neuropathologically assessed cerebral atherosclerosis measures available, we found a novel locus for cerebral atherosclerosis in NTNG1. The locus comprises eight SNPs, including two independent significant SNPs: rs6664221 (ß = -0.27, 95% CI = (-0.35, -0.19), p = 1.29 × 10-10) and rs10881463 (ß = -0.20, 95% CI = (-0.27, -0.13), p = 3.40 × 10-8). We further found that the SNPs may influence cerebral atherosclerosis by regulating brain protein expression of CNOT3. CNOT3 is a subunit of CCR4-NOT, which has been shown to be a master regulator of mRNA stability and translation and an important complex for cholesterol homeostasis. In summary, we identify a novel genetic locus for cerebral atherosclerosis and a potential mechanism linking this variation to cerebral atherosclerosis progression. These findings offer insights into the genetic effects on cerebral atherosclerosis.


Subject(s)
Intracranial Arteriosclerosis/genetics , Netrins/genetics , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Aged , Aged, 80 and over , Female , GPI-Linked Proteins/genetics , Humans , Male , Middle Aged
11.
Nat Neurosci ; 24(6): 810-817, 2021 06.
Article in English | MEDLINE | ID: mdl-33846625

ABSTRACT

Depression is a common condition, but current treatments are only effective in a subset of individuals. To identify new treatment targets, we integrated depression genome-wide association study (GWAS) results (N = 500,199) with human brain proteomes (N = 376) to perform a proteome-wide association study of depression followed by Mendelian randomization. We identified 19 genes that were consistent with being causal in depression, acting via their respective cis-regulated brain protein abundance. We replicated nine of these genes using an independent depression GWAS (N = 307,353) and another human brain proteomic dataset (N = 152). Eleven of the 19 genes also had cis-regulated mRNA levels that were associated with depression, based on integration of the depression GWAS with human brain transcriptomes (N = 888). Meta-analysis of the discovery and replication proteome-wide association study analyses identified 25 brain proteins consistent with being causal in depression, 20 of which were not previously implicated in depression by GWAS. Together, these findings provide promising brain protein targets for further mechanistic and therapeutic studies.


Subject(s)
Brain , Depression/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Proteome/genetics , Proteomics/methods , Brain/pathology , Databases, Genetic , Depression/pathology , Humans
12.
Neuropsychopharmacology ; 46(10): 1811-1820, 2021 09.
Article in English | MEDLINE | ID: mdl-34188182

ABSTRACT

Biomarkers that predict symptom trajectories after trauma can facilitate early detection or intervention for posttraumatic stress disorder (PTSD) and may also advance our understanding of its biology. Here, we aimed to identify trajectory-based biomarkers using blood transcriptomes collected in the immediate aftermath of trauma exposure. Participants were recruited from an Emergency Department in the immediate aftermath of trauma exposure and assessed for PTSD symptoms at baseline, 1, 3, 6, and 12 months. Three empirical symptom trajectories (chronic-PTSD, remitting, and resilient) were identified in 377 individuals based on longitudinal symptoms across four data points (1, 3, 6, and 12 months), using latent growth mixture modeling. Blood transcriptomes were examined for association with longitudinal symptom trajectories, followed by expression quantitative trait locus analysis. GRIN3B and AMOTL1 blood mRNA levels were associated with chronic vs. resilient post-trauma symptom trajectories at a transcriptome-wide significant level (N = 153, FDR-corrected p value = 0.0063 and 0.0253, respectively). We identified four genetic variants that regulate mRNA blood expression levels of GRIN3B. Among these, GRIN3B rs10401454 was associated with PTSD in an independent dataset (N = 3521, p = 0.04). Examination of the BrainCloud and GTEx databases revealed that rs10401454 was associated with brain mRNA expression levels of GRIN3B. While further replication and validation studies are needed, our data suggest that GRIN3B, a glutamate ionotropic receptor NMDA type subunit-3B, may be involved in the manifestation of PTSD. In addition, the blood mRNA level of GRIN3B may be a promising early biomarker for the PTSD manifestation and development.


Subject(s)
Stress Disorders, Post-Traumatic , Biomarkers , Humans , Stress Disorders, Post-Traumatic/genetics , Transcriptome
13.
Nat Genet ; 53(2): 143-146, 2021 02.
Article in English | MEDLINE | ID: mdl-33510477

ABSTRACT

Genome-wide association studies (GWAS) have identified many risk loci for Alzheimer's disease (AD)1,2, but how these loci confer AD risk is unclear. Here, we aimed to identify loci that confer AD risk through their effects on brain protein abundance to provide new insights into AD pathogenesis. To that end, we integrated AD GWAS results with human brain proteomes to perform a proteome-wide association study (PWAS) of AD, followed by Mendelian randomization and colocalization analysis. We identified 11 genes that are consistent with being causal in AD, acting via their cis-regulated brain protein abundance. Nine replicated in a confirmation PWAS and eight represent new AD risk genes not identified before by AD GWAS. Furthermore, we demonstrated that our results were independent of APOE e4. Together, our findings provide new insights into AD pathogenesis and promising targets for further mechanistic and therapeutic studies.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Proteome/genetics , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Epoxide Hydrolases/genetics , Genome-Wide Association Study , Humans , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Receptors, Virus/genetics , Sequence Analysis, RNA , Single-Cell Analysis
14.
Nat Neurosci ; 23(6): 696-700, 2020 06.
Article in English | MEDLINE | ID: mdl-32424284

ABSTRACT

Cerebral atherosclerosis contributes to dementia via unclear processes. We performed proteomic sequencing of dorsolateral prefrontal cortex in 438 older individuals and found associations between cerebral atherosclerosis and reduced synaptic signaling and between RNA splicing and increased oligodendrocyte development and myelination. Consistently, single-cell RNA sequencing showed cerebral atherosclerosis associated with higher oligodendrocyte abundance. A subset of proteins and modules associated with cerebral atherosclerosis was also associated with Alzheimer's disease, suggesting shared mechanisms.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Intracranial Arteriosclerosis/metabolism , Nerve Tissue Proteins/biosynthesis , Prefrontal Cortex/metabolism , Proteomics , Alzheimer Disease/complications , Databases, Factual , Humans , Intracranial Arteriosclerosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL