Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Publication year range
1.
Immunity ; 53(4): 805-823.e15, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053330

ABSTRACT

The activating receptor CD226 is expressed on lymphocytes, monocytes, and platelets and promotes anti-tumor immunity in pre-clinical models. Here, we examined the role of CD226 in the function of tumor-infiltrating lymphocytes (TILs) and resistance to immunotherapy. In murine tumors, a large proportion of CD8+ TILs had decreased surface expression of CD226 and exhibited features of dysfunction, whereas CD226hi TILs were highly functional. This correlation was seen also in TILs isolated from HNSCC patients. Mutation of CD226 at tyrosine 319 (Y319) led to increased CD226 surface expression, enhanced anti-tumor immunity and improved efficacy of immune checkpoint blockade (ICB). Mechanistically, tumor-derived CD155, the ligand for CD226, initiated phosphorylation of Y319 by Src kinases, thereby enabling ubiquitination of CD226 by CBL-B, internalization, and proteasomal degradation. In pre-treatment samples from melanoma patients, CD226+CD8+ T cells correlated with improved progression-free survival following ICB. Our findings argue for the development of therapies aimed at maintaining the expression of CD226.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Virus/immunology , Animals , Cell Line , Cell Line, Tumor , HEK293 Cells , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Jurkat Cells , Lymphocytes, Tumor-Infiltrating/immunology , Male , Melanoma/immunology , Mice , Mice, Inbred C57BL
2.
Nature ; 614(7946): 168-174, 2023 02.
Article in English | MEDLINE | ID: mdl-36423657

ABSTRACT

CRISPR defence systems such as the well-known DNA-targeting Cas9 and the RNA-targeting type III systems are widespread in prokaryotes1,2. The latter orchestrates a complex antiviral response that is initiated through the synthesis of cyclic oligoadenylates after recognition of foreign RNA3-5. Among the large set of proteins that are linked to type III systems and predicted to bind cyclic oligoadenylates6,7, a CRISPR-associated Lon protease (CalpL) stood out to us. CalpL contains a sensor domain of the SAVED family7 fused to a Lon protease effector domain. However, the mode of action of this effector is unknown. Here we report the structure and function of CalpL and show that this soluble protein forms a stable tripartite complex with two other proteins, CalpT and CalpS, that are encoded on the same operon. After activation by cyclic tetra-adenylate (cA4), CalpL oligomerizes and specifically cleaves the MazF homologue CalpT, which releases the extracytoplasmic function σ factor CalpS from the complex. Our data provide a direct connection between CRISPR-based detection of foreign nucleic acids and transcriptional regulation. Furthermore, the presence of a SAVED domain that binds cyclic tetra-adenylate in a CRISPR effector reveals a link to the cyclic-oligonucleotide-based antiphage signalling system.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Proteins , CRISPR-Cas Systems , Nucleotides, Cyclic , Protease La , Bacteria/enzymology , Bacteria/immunology , Bacteria/metabolism , Bacteria/virology , Bacteriophages/immunology , Bacteriophages/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/physiology , Cyclic AMP/analogs & derivatives , Cyclic AMP/chemistry , Enzyme Activation , Gene Expression Regulation, Bacterial , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/metabolism , Operon , Protease La/chemistry , Protease La/metabolism , RNA, Viral , Sigma Factor , Transcription, Genetic
3.
Nature ; 604(7904): 184-189, 2022 04.
Article in English | MEDLINE | ID: mdl-35114687

ABSTRACT

NLRP3 is an intracellular sensor protein that when activated by a broad spectrum of exogenous and endogenous stimuli leads to inflammasome formation and pyroptosis1,2. The conformational states of NLRP3 and the way antagonistic small molecules act at the molecular level remain poorly understood2,3. Here we report the cryo-electron microscopy structures of full-length human NLRP3 in its native form and complexed with the inhibitor CRID3 (also named MCC950)4. Inactive, ADP-bound NLRP3 is a decamer composed of homodimers of intertwined leucine-rich repeat (LRR) domains that assemble back-to-back as pentamers. The NACHT domain is located at the apical axis of this spherical structure. One pyrin domain dimer is in addition formed inside the LRR cage. Molecular contacts between the concave sites of two opposing LRR domains are mediated by an acidic loop that extends from an LRR transition segment. Binding of CRID3 considerably stabilizes the NACHT and LRR domains relative to each other. CRID3 binds into a cleft, connecting four subdomains of the NACHT with the transition LRR. Its central sulfonylurea group interacts with the Walker A motif of the NLRP3 nucleotide-binding domain and is sandwiched between two arginine residues, which explains the specificity of NLRP3 for this chemical entity. With the determination of the binding site of this key therapeutic agent, specific targeting of NLRP3 for the treatment of autoinflammatory and autoimmune diseases and rational drug optimization is within reach.


Subject(s)
Furans , Indenes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides , Cryoelectron Microscopy , Furans/chemistry , Humans , Indenes/chemistry , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , Protein Conformation , Sulfonamides/chemistry
4.
Genes Dev ; 34(21-22): 1452-1473, 2020 11 01.
Article in English | MEDLINE | ID: mdl-33060135

ABSTRACT

CDK7 associates with the 10-subunit TFIIH complex and regulates transcription by phosphorylating the C-terminal domain (CTD) of RNA polymerase II (RNAPII). Few additional CDK7 substrates are known. Here, using the covalent inhibitor SY-351 and quantitative phosphoproteomics, we identified CDK7 kinase substrates in human cells. Among hundreds of high-confidence targets, the vast majority are unique to CDK7 (i.e., distinct from other transcription-associated kinases), with a subset that suggest novel cellular functions. Transcription-associated factors were predominant CDK7 substrates, including SF3B1, U2AF2, and other splicing components. Accordingly, widespread and diverse splicing defects, such as alternative exon inclusion and intron retention, were characterized in CDK7-inhibited cells. Combined with biochemical assays, we establish that CDK7 directly activates other transcription-associated kinases CDK9, CDK12, and CDK13, invoking a "master regulator" role in transcription. We further demonstrate that TFIIH restricts CDK7 kinase function to the RNAPII CTD, whereas other substrates (e.g., SPT5 and SF3B1) are phosphorylated by the three-subunit CDK-activating kinase (CAK; CCNH, MAT1, and CDK7). These results suggest new models for CDK7 function in transcription and implicate CAK dissociation from TFIIH as essential for kinase activation. This straightforward regulatory strategy ensures CDK7 activation is spatially and temporally linked to transcription, and may apply toward other transcription-associated kinases.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Models, Biological , Transcription Factor TFIIH/metabolism , Transcription, Genetic/genetics , Alternative Splicing/genetics , Cell Survival/drug effects , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Enzyme Activation/genetics , HL-60 Cells , Humans , Cyclin-Dependent Kinase-Activating Kinase
5.
Mol Cell ; 74(2): 254-267.e10, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30824372

ABSTRACT

DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.


Subject(s)
Positive Transcriptional Elongation Factor B/genetics , RNA Polymerase II/genetics , RNA-Binding Proteins/genetics , Transcription, Genetic , Apoptosis/genetics , Cell Survival/genetics , DNA Damage/genetics , HEK293 Cells , Humans , RNA, Long Noncoding/genetics , Ribonucleoproteins, Small Nuclear/genetics , p38 Mitogen-Activated Protein Kinases/genetics
6.
Mol Cell ; 74(4): 674-687.e11, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30928206

ABSTRACT

The MYC oncoprotein binds to promoter-proximal regions of virtually all transcribed genes and enhances RNA polymerase II (Pol II) function, but its precise mode of action is poorly understood. Using mass spectrometry of both MYC and Pol II complexes, we show here that MYC controls the assembly of Pol II with a small set of transcription elongation factors that includes SPT5, a subunit of the elongation factor DSIF. MYC directly binds SPT5, recruits SPT5 to promoters, and enables the CDK7-dependent transfer of SPT5 onto Pol II. Consistent with known functions of SPT5, MYC is required for fast and processive transcription elongation. Intriguingly, the high levels of MYC that are expressed in tumors sequester SPT5 into non-functional complexes, thereby decreasing the expression of growth-suppressive genes. Altogether, these results argue that MYC controls the productive assembly of processive Pol II elongation complexes and provide insight into how oncogenic levels of MYC permit uncontrolled cellular growth.


Subject(s)
Nuclear Proteins/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA Polymerase II/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinases/genetics , Histone Chaperones/genetics , Humans , Neoplasms/genetics , Promoter Regions, Genetic , Cyclin-Dependent Kinase-Activating Kinase
7.
J Biol Chem ; 300(3): 105698, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301887

ABSTRACT

Nuclear actin has been demonstrated to be essential for optimal transcription, but the molecular mechanisms and direct binding partner for actin in the RNA polymerase complex have remained unknown. By using purified proteins in a variety of biochemical assays, we demonstrate a direct and specific interaction between monomeric actin and Cdk9, the kinase subunit of the positive transcription elongation factor b required for RNA polymerase II pause-release. This interaction efficiently prevents actin polymerization, is not dependent on kinase activity of Cdk9, and is not involved with releasing positive transcription elongation factor b from its inhibitor 7SK snRNP complex. Supporting the specific role for actin in the elongation phase of transcription, chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) reveals that actin interacts with genes only upon their active transcription elongation. This study therefore provides novel insights into the mechanisms by which actin facilitates the transcription process.


Subject(s)
Actins , Cyclin-Dependent Kinase 9 , Positive Transcriptional Elongation Factor B , Humans , Actins/genetics , Actins/metabolism , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic
8.
J Biol Chem ; 300(1): 105501, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016516

ABSTRACT

Inhibition of cyclin-dependent kinases (CDKs) has evolved as an emerging anticancer strategy. In addition to the cell cycle-regulating CDKs, the transcriptional kinases Cdk12 and Cdk13 have become the focus of interest as they mediate a variety of functions, including the transition from transcription initiation to elongation and termination, precursor mRNA splicing, and intronic polyadenylation. Here, we determine the crystal structure of the small molecular inhibitor SR-4835 bound to the Cdk12/cyclin K complex at 2.68 Å resolution. The compound's benzimidazole moiety is embedded in a unique hydrogen bond network mediated by the kinase hinge region with flanking hydroxy groups of the Y815 and D819 side chains. Whereas the SR-4835 head group targets the adenine-binding pocket, the kinase's glycine-rich loop is shifted down toward the activation loop. Additionally, the αC-helix adopts an inward conformation, and the phosphorylated T-loop threonine interacts with all three canonical arginines, a hallmark of CDK activation that is altered in Cdk12 and Cdk13. Dose-response inhibition measurements with recombinant CMGC kinases show that SR-4835 is highly specific for Cdk12 and Cdk13 following a 10-fold lower potency for Cdk10. Whereas other CDK-targeting compounds exhibit tighter binding affinities and higher potencies for kinase inhibition, SR-4835 can be considered a selective transcription elongation antagonist. Our results provide the basis for a rational improvement of SR-4835 toward Cdk12 inhibition and a gain in selectivity over other transcription regulating CDKs.


Subject(s)
Cyclin-Dependent Kinases , Cyclins , Polyadenylation , Cyclins/metabolism , Molecular Conformation , Humans , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry
9.
Nucleic Acids Res ; 51(21): 11893-11910, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37831086

ABSTRACT

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA). Here, we found that, while 5'unmodified hydroxyl(OH)-dsRNA demonstrated residual activation potential, 5'-monophosphate(5'p)-termini, present on most cellular RNAs, prevented RIG-I activation. Determination of CTD/dsRNA co-crystal structures and mutant activation studies revealed that the evolutionarily conserved I875 within the CTD sterically inhibits 5'p-dsRNA binding. RIG-I(I875A) was activated by both synthetic 5'p-dsRNA and endogenous long dsRNA within the polyA-rich fraction of total cellular RNA. RIG-I(I875A) specifically interacted with long, polyA-bearing, mitochondrial(mt) RNA, and depletion of mtRNA from total RNA abolished its activation. Altogether, our study demonstrates that avoidance of 5'p-RNA recognition is crucial to prevent mtRNA-triggered RIG-I-mediated autoinflammation.


Subject(s)
DEAD Box Protein 58 , Isoleucine , Receptors, Immunologic , DEAD Box Protein 58/chemistry , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Immune Tolerance , Isoleucine/genetics , RNA, Double-Stranded/genetics , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Humans , Receptors, Immunologic/chemistry , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
10.
Immunology ; 171(2): 181-197, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37885279

ABSTRACT

Haemolytic disorders, such as sickle cell disease, are accompanied by the release of high amounts of labile heme into the intravascular compartment resulting in the induction of proinflammatory and prothrombotic complications in affected patients. In addition to the relevance of heme-regulated proteins from the complement and blood coagulation systems, activation of the TLR4 signalling pathway by heme was ascribed a crucial role in the progression of these pathological processes. Heme binding to the TLR4-MD2 complex has been proposed recently, however, essential mechanistic information of the processes at the molecular level, such as heme-binding kinetics, the heme-binding capacity and the respective heme-binding sites (HBMs) is still missing. We report the interaction of TLR4, MD2 and the TLR4-MD2 complex with heme and the consequences thereof by employing biochemical, spectroscopic, bioinformatic and physiologically relevant approaches. Heme binding occurs transiently through interaction with up to four HBMs in TLR4, two HBMs in MD2 and at least four HBMs in their complex. Functional studies highlight that mutations of individual HBMs in TLR4 preserve full receptor activation by heme, suggesting that heme interacts with TLR4 through different binding sites independently of MD2. Furthermore, we confirm and extend the major role of TLR4 for heme-mediated cytokine responses in human immune cells.


Subject(s)
Signal Transduction , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Binding Sites , Cytokines/metabolism , Lymphocyte Antigen 96/metabolism , Lipopolysaccharides
11.
Br J Dermatol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39026424

ABSTRACT

BACKGROUND: Monilethrix is a rare hereditary hair disorder that is characterised by a beaded hair shaft structure and increased hair fragility. Patients may also present with keratosis pilaris and nail changes. Research has identified three genes for autosomal-dominant monilethrix (KRT81, KRT83, and KRT86), and one gene for the autosomal-recessive form (DSG4). OBJECTIVES: To investigate the genetic basis of autosomal-dominant monilethrix in families with no pathogenic variants in any of the known monilethrix genes, and to understand the mechanistic basis of variant pathogenicity using a cellular model. METHODS: Nine affected individuals from four unrelated families were included in this study. A clinical diagnosis of monilethrix was assigned based on clinical examination and/or trichoscopy. Exome sequencing (ES) was performed in six individuals to identify pathogenic variants, and Sanger sequencing was used for co-segregation and haplotype analyses. Cell culture experiments (immunoblotting, immunofluorescence, and reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analyses) were used to confirm variant pathogenicity, to determine expression and subcellular localisation of proteins, and to identify a possible nonsense-mediated mRNA decay. RESULTS: In six affected individuals with clinically suggested monilethrix, ES led to the identification of the nonsense variant c.1081G>T; p.(Glu361*) in KRT31, which was subsequently identified in other affected members of these families by Sanger sequencing. This variant led to the abolition of both the last three amino acids of the 2B subdomain and the complete C-terminal tail domain of keratin 31. Immunoblotting demonstrated that when co-expressed with its binding partner keratin 85, the truncated keratin 31 was still expressed, albeit less abundantly than the wild type protein. Immunofluorescence revealed that p.(Glu361*) keratin 31 had an altered cytoskeletal localisation and formed vesicular-like structures in the cell cytoplasm near the cell membrane. RT-qPCR analysis did not generate evidence for a nonsense mediated decay of the mutant transcript. CONCLUSIONS: This study is the first to identify pathogenic variants in KRT31 as a cause of autosomal-dominant monilethrix. This highlights the importance of hair keratin proteins in hair biology, and will increase the molecular diagnostic yield for rare ectodermal phenotypes of hair and nail tissues.

12.
Bioorg Med Chem Lett ; 102: 129675, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38417632

ABSTRACT

NLRP3 is an intracellular sensor protein that detects a broad range of danger signals and environmental insults. Its activation results in a protective pro-inflammatory response designed to impair pathogens and repair tissue damage via the formation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent secretory release of the pro-inflammatory cytokines IL-1ß and IL-18 as well as to gasdermin d-mediated pyroptotic cell death. Herein, we describe the discovery of a novel indazole series of high affinity, reversible inhibitors of NLRP3 activation through screening of DNA-encoded libraries and the potent lead compound 3 (BAL-0028, IC50 = 25 nM) that was identified directly from the screen. SPR studies showed that compound 3 binds tightly (KD range 104-123 nM) to the NACHT domain of NLRP3. A CADD analysis of the interaction of compound 3 with the NLRP3 NACHT domain proposes a binding site that is distinct from those of ADP and MCC950 and includes specific site interactions. We anticipate that compound 3 (BAL-0028) and other members of this novel indazole class of neutral inhibitors will demonstrate significantly different physical, biochemical, and biological properties compared to NLRP3 inhibitors previously identified.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Sulfonamides , Cytokines/metabolism , Interleukin-1beta/metabolism , Caspase 1 , DNA
13.
Mol Cell ; 61(1): 54-67, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26687678

ABSTRACT

MYC is an unstable protein, and its turnover is controlled by the ubiquitin system. Ubiquitination enhances MYC-dependent transactivation, but the underlying mechanism remains unresolved. Here we show that MYC proteasomal turnover is dispensable for loading of RNA polymerase II (RNAPII). In contrast, MYC turnover is essential for recruitment of TRRAP, histone acetylation, and binding of BRD4 and P-TEFb to target promoters, leading to phosphorylation of RNAPII and transcriptional elongation. In the absence of histone acetylation and P-TEFb recruitment, MYC associates with the PAF1 complex (PAF1C) through a conserved domain in the MYC amino terminus ("MYC box I"). Depletion of the PAF1C subunit CDC73 enhances expression of MYC target genes, suggesting that the MYC/PAF1C complex can inhibit transcription. Because several ubiquitin ligases bind to MYC via the same domain ("MYC box II") that interacts with TRRAP, we propose that degradation of MYC limits the accumulation of MYC/PAF1C complexes during transcriptional activation.


Subject(s)
Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Elongation, Genetic , Tumor Suppressor Proteins/metabolism , Ubiquitination , Acetylation , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cell Cycle Proteins , Cell Proliferation , Chromatin Assembly and Disassembly , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , Multiprotein Complexes , Mutation , Nuclear Proteins/genetics , Phosphoproteins/genetics , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , Proteolysis , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , RNA Polymerase II/metabolism , Time Factors , Transcription Factors/metabolism , Transfection , Tumor Suppressor Proteins/genetics
14.
Genes Dev ; 30(1): 117-31, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26728557

ABSTRACT

The transcription cycle of RNA polymerase II (Pol II) is regulated at discrete transition points by cyclin-dependent kinases (CDKs). Positive transcription elongation factor b (P-TEFb), a complex of Cdk9 and cyclin T1, promotes release of paused Pol II into elongation, but the precise mechanisms and targets of Cdk9 action remain largely unknown. Here, by a chemical genetic strategy, we identified ∼ 100 putative substrates of human P-TEFb, which were enriched for proteins implicated in transcription and RNA catabolism. Among the RNA processing factors phosphorylated by Cdk9 was the 5'-to-3' "torpedo" exoribonuclease Xrn2, required in transcription termination by Pol II, which we validated as a bona fide P-TEFb substrate in vivo and in vitro. Phosphorylation by Cdk9 or phosphomimetic substitution of its target residue, Thr439, enhanced enzymatic activity of Xrn2 on synthetic substrates in vitro. Conversely, inhibition or depletion of Cdk9 or mutation of Xrn2-Thr439 to a nonphosphorylatable Ala residue caused phenotypes consistent with inefficient termination in human cells: impaired Xrn2 chromatin localization and increased readthrough transcription of endogenous genes. Therefore, in addition to its role in elongation, P-TEFb regulates termination by promoting chromatin recruitment and activation of a cotranscriptional RNA processing enzyme, Xrn2.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression Regulation/genetics , Positive Transcriptional Elongation Factor B/metabolism , Chromatin/metabolism , Enzyme Activation/genetics , Genetic Testing , HCT116 Cells , Humans , Phosphorylation , Protein Binding
15.
J Biol Chem ; 298(12): 102645, 2022 12.
Article in English | MEDLINE | ID: mdl-36309085

ABSTRACT

The inflammasome sensor NLRP1 (nucleotide-binding oligomerization domain-like receptor containing a pyrin domain 1) detects a variety of pathogen-derived molecular patterns to induce an inflammatory immune response by triggering pyroptosis and cytokine release. A number of mutations and polymorphisms of NLRP1 are known to cause autoinflammatory diseases, the functional characterization of which contributes to a better understanding of NLRP1 regulation. Here, we assessed the effect of the common NLRP1 variant M1184V, associated with asthma, inflammatory bowel disease, and diabetes, on the protein level. Our size-exclusion chromatography experiments show that M1184V stabilizes the "function-to-find" domain (FIIND) in a monomeric conformation. This effect is independent of autoproteolysis. In addition, molecular dynamics simulations reveal that the methionine residue increases flexibility within the ZU5 domain, whereas valine decreases flexibility, potentially indirectly stabilizing the catalytic triad responsible for autocleavage. By keeping the FIIND domain monomeric, formation of a multimer of full-length NLRP1 is promoted. We found that the stabilizing effect of the valine further leads to improved dipeptidyl peptidase 9 (DPP9)-binding capacities for the FIIND domain as well as the full-length protein as determined by surface plasmon resonance. Moreover, our immunoprecipitation experiments confirmed increased DPP9 binding for the M1184V protein in cells, consistent with improved formation of an autoinhibited complex with DPP9 in activity assays. Collectively, our study establishes a molecular rationale for the dichotomous involvement of the NLRP1 variant M1184V in autoimmune syndromes.


Subject(s)
Autoimmune Diseases , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , NLR Proteins , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , NLR Proteins/metabolism , Humans , Autoimmune Diseases/metabolism
16.
Nat Chem Biol ; 17(6): 675-683, 2021 06.
Article in English | MEDLINE | ID: mdl-33753926

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.


Subject(s)
Cyclin-Dependent Kinases/drug effects , Animals , DNA Damage/genetics , Drug Design , Drug Discovery , Drug Resistance , Humans , Poly A/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Protein Kinase Inhibitors/pharmacology , Proteomics
17.
Br J Dermatol ; 189(6): 741-749, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37671665

ABSTRACT

BACKGROUND: Short anagen hair (SAH) is a rare paediatric hair disorder characterized by a short anagen phase, an inability to grow long scalp hair and a negative psychological impact. The genetic basis of SAH is currently unknown. OBJECTIVES: To perform molecular genetic investigations in 48 individuals with a clinical phenotype suggestive of SAH to identify, if any, the genetic basis of this condition. METHODS: Exome sequencing was performed in 27 patients diagnosed with SAH or with a complaint of short, nongrowing hair. The cohort was screened for variants with a minor allele frequency (MAF) < 5% in the general population and a Combined Annotation Dependent Depletion (CADD) score > 15, to identify genes whose variants were enriched in this cohort. Sanger sequencing was used for variant validation and screening of 21 additional individuals with the same clinical diagnosis and their relatives. Genetic association testing of SAH-related variants for male pattern hair loss (MPHL) was performed using UK Biobank data. RESULTS: Analyses revealed that 20 individuals (42%) carried mono- or biallelic pathogenic variants in WNT10A. Rare WNT10A variants are associated with a phenotypic spectrum ranging from no clinical signs to severe ectodermal dysplasia. A significant association was found between WNT10A and SAH, and this was mostly observed in individuals with light-coloured hair and regression of the frontoparietal hairline. Notably, the most frequent variant in the cohort [c.682T>A;p.(Phe228Ile)] was in linkage disequilibrium with four common WNT10A variants, all of which have a known association with MPHL. Using UK Biobank data, our analyses showed that c.682T>A;p.(Phe228Ile) and one other variant identified in the SAH cohort are also associated with MPHL, and partially explain the known associations between WNT10A and MPHL. CONCLUSIONS: Our results suggest that WNT10A is associated with SAH and that SAH has a genetic overlap with the common phenotype MPHL. The presumed shared biologic effect of WNT10A variants in SAH and MPHL is a shortening of the anagen phase. Other factors, such as modifier genes and sex, may also play a role in the clinical manifestation of hair phenotypes associated with the WNT10A locus.


Subject(s)
Ectodermal Dysplasia , Hair , Humans , Male , Child , Alopecia , Phenotype , Ectodermal Dysplasia/genetics , Gene Frequency , Wnt Proteins/genetics
18.
Nature ; 552(7685): 355-361, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29293211

ABSTRACT

The spreading of pathology within and between brain areas is a hallmark of neurodegenerative disorders. In patients with Alzheimer's disease, deposition of amyloid-ß is accompanied by activation of the innate immune system and involves inflammasome-dependent formation of ASC specks in microglia. ASC specks released by microglia bind rapidly to amyloid-ß and increase the formation of amyloid-ß oligomers and aggregates, acting as an inflammation-driven cross-seed for amyloid-ß pathology. Here we show that intrahippocampal injection of ASC specks resulted in spreading of amyloid-ß pathology in transgenic double-mutant APPSwePSEN1dE9 mice. By contrast, homogenates from brains of APPSwePSEN1dE9 mice failed to induce seeding and spreading of amyloid-ß pathology in ASC-deficient APPSwePSEN1dE9 mice. Moreover, co-application of an anti-ASC antibody blocked the increase in amyloid-ß pathology in APPSwePSEN1dE9 mice. These findings support the concept that inflammasome activation is connected to seeding and spreading of amyloid-ß pathology in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , CARD Signaling Adaptor Proteins/metabolism , Microglia/metabolism , Protein Aggregation, Pathological , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/deficiency , Amyloid beta-Protein Precursor/genetics , Animals , Antibodies/administration & dosage , Antibodies/immunology , Antibodies/pharmacology , CARD Signaling Adaptor Proteins/antagonists & inhibitors , CARD Signaling Adaptor Proteins/chemistry , CARD Signaling Adaptor Proteins/immunology , Female , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Inflammasomes/immunology , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Presenilin-1/deficiency , Presenilin-1/genetics , Protein Domains , Spatial Memory/physiology
19.
J Biol Chem ; 296: 100260, 2021.
Article in English | MEDLINE | ID: mdl-33814344

ABSTRACT

The concept of liquid-liquid phase separation (LLPS) has emerged as an intriguing mechanism for the organization of membraneless compartments in cells. The alcohol 1,6-hexanediol is widely used as a control to dissolve LLPS assemblies in phase separation studies in diverse fields. However, little is known about potential side effects of 1,6-hexanediol, which could compromise data interpretation and mislead the scientific debate. To examine this issue, we analyzed the effect of 1,6-hexanediol on the activities of various enzymes in vitro. Already at 1% volume concentration, 1,6-hexanediol strongly impaired kinases and phosphatases and partly blocked DNA polymerases, while it had no effect on DNase activity. At concentrations that are usually used to dissolve LLPS droplets (5-10%), both kinases and phosphatases were virtually inactive. Given the widespread function of protein phosphorylation in cells, our data argue for a careful review of 1,6-hexanediol in phase separation studies.


Subject(s)
Glycols/pharmacology , Organelles/chemistry , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphotransferases/antagonists & inhibitors , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/drug effects , Glycols/chemistry , Organelles/genetics , Phosphoric Monoester Hydrolases/chemistry , Phosphorylation/drug effects , Phosphotransferases/chemistry , Protein Domains/genetics
20.
J Clin Immunol ; 42(2): 325-335, 2022 02.
Article in English | MEDLINE | ID: mdl-34783940

ABSTRACT

PURPOSE: NLRC4-associated autoinflammatory disease (NLRC4-AID) is an autosomal dominant condition presenting with a range of clinical manifestations which can include macrophage activation syndrome (MAS) and severe enterocolitis. We now report the first homozygous mutation in NLRC4 (c.478G > A, p.A160T) causing autoinflammatory disease with immune dysregulation and find that heterozygous carriers in the general population are at increased risk of developing ulcerative colitis. METHODS: Circulating immune cells and inflammatory markers were profiled and historical clinical data interrogated. DNA was extracted and sequenced using standard procedures. Inflammasome activation assays for ASC speck formation, pyroptosis, and IL-1ß/IL-18 secretion confirmed pathogenicity of the mutation in vitro. Genome-wide association of NLRC4 (A160T) with ulcerative colitis was examined using data from the IBD exomes portal. RESULTS: A 60-year-old Brazilian female patient was evaluated for recurrent episodes of systemic inflammation from six months of age. Episodes were characterized by recurrent low-grade fever, chills, oral ulceration, uveitis, arthralgia, and abdominal pain, followed by diarrhea with mucus and variable skin rash. High doses of corticosteroids were somewhat effective in controlling disease and anti-IL-1ß therapy partially controlled symptoms. While on treatment, serum IL-1ß and IL-18 levels remained elevated. Genetic investigations identified a homozygous mutation in NLRC4 (A160T), inherited in a recessive fashion. Increased ASC speck formation and IL-1ß/IL-18 secretion confirmed pathogenicity when NLRC4 (A160T) was analyzed in human cell lines. This allele is significantly enriched in patients with ulcerative colitis: OR 2.546 (95% 1.778-3.644), P = 0.01305. CONCLUSION: NLRC4 (A160T) can either cause recessively inherited autoinflammation and immune dysregulation, or function as a heterozygous risk factor for the development of ulcerative colitis.


Subject(s)
Colitis, Ulcerative , Hereditary Autoinflammatory Diseases , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Calcium-Binding Proteins/genetics , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Female , Genome-Wide Association Study , Humans , Inflammasomes/metabolism , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL