Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Genome Res ; 33(3): 463-477, 2023 03.
Article in English | MEDLINE | ID: mdl-37310928

ABSTRACT

Structural variations (SVs) are a major contributor to genetic diversity and phenotypic variations, but their prevalence and functions in domestic animals are largely unexplored. Here we generated high-quality genome assemblies for 15 individuals from genetically diverse sheep breeds using Pacific Biosciences (PacBio) high-fidelity sequencing, discovering 130.3 Mb nonreference sequences, from which 588 genes were annotated. A total of 149,158 biallelic insertions/deletions, 6531 divergent alleles, and 14,707 multiallelic variations with precise breakpoints were discovered. The SV spectrum is characterized by an excess of derived insertions compared to deletions (94,422 vs. 33,571), suggesting recent active LINE expansions in sheep. Nearly half of the SVs display low to moderate linkage disequilibrium with surrounding single-nucleotide polymorphisms (SNPs) and most SVs cannot be tagged by SNP probes from the widely used ovine 50K SNP chip. We identified 865 population-stratified SVs including 122 SVs possibly derived in the domestication process among 690 individuals from sheep breeds worldwide. A novel 168-bp insertion in the 5' untranslated region (5' UTR) of HOXB13 is found at high frequency in long-tailed sheep. Further genome-wide association study and gene expression analyses suggest that this mutation is causative for the long-tail trait. In summary, we have developed a panel of high-quality de novo assemblies and present a catalog of structural variations in sheep. Our data capture abundant candidate functional variations that were previously unexplored and provide a fundamental resource for understanding trait biology in sheep.


Subject(s)
Genome-Wide Association Study , Tail , Animals , Sheep/genetics , 5' Untranslated Regions , Alleles , Phenotype
2.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37433053

ABSTRACT

Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.


Subject(s)
Wolves , Dogs , Animals , Wolves/genetics , Multifactorial Inheritance , Genome , Genomics , Base Sequence
3.
BMC Res Notes ; 16(1): 353, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012774

ABSTRACT

OBJECTIVE: The data provided herein represent the whole-genome sequencing data associated with three sheep breeds of Iranian native breeds. Sheep are the first domesticated animals that, during the long path of the evolution process, have created gene variants with desirable phenotypic effects, so they can be suitable models for biomedical research. In addition, sheep have a vital role in providing protein to a notable part of the human population around the world. DATA DESCRIPTION: Ten blood samples were taken from three Iranian native sheep breeds, the Zel, Karakul, and Kermani kinds. Blood samples genomes were extracted using the salting-out technique. The Illumina NovaSeq 6000 platform was used to carry out sequencing of the whole genome in a laboratory in China. All sequence information is available through the NCBI database in the sequence read archive (SRA) format under the accession number PRJNA904537. The dataset presented here can provide a useful resource for genome analysis of livestock breeds adapted to hot and dry regions.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Humans , Sheep/genetics , Animals , Iran , Genome/genetics , China
SELECTION OF CITATIONS
SEARCH DETAIL