Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Mol Cell ; 83(10): 1725-1742.e12, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37084731

ABSTRACT

Most human proteins lack chemical probes, and several large-scale and generalizable small-molecule binding assays have been introduced to address this problem. How compounds discovered in such "binding-first" assays affect protein function, nonetheless, often remains unclear. Here, we describe a "function-first" proteomic strategy that uses size exclusion chromatography (SEC) to assess the global impact of electrophilic compounds on protein complexes in human cells. Integrating the SEC data with cysteine-directed activity-based protein profiling identifies changes in protein-protein interactions that are caused by site-specific liganding events, including the stereoselective engagement of cysteines in PSME1 and SF3B1 that disrupt the PA28 proteasome regulatory complex and stabilize a dynamic state of the spliceosome, respectively. Our findings thus show how multidimensional proteomic analysis of focused libraries of electrophilic compounds can expedite the discovery of chemical probes with site-specific functional effects on protein complexes in human cells.


Subject(s)
Proteomics , Transcription Factors , Humans , Proteomics/methods , Cysteine/metabolism , Ligands
2.
Nat Chem Biol ; 19(7): 825-836, 2023 07.
Article in English | MEDLINE | ID: mdl-36864190

ABSTRACT

Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO. Broader profiling revealed that covalent NONO ligands suppress an array of cancer-relevant genes and impair cancer cell proliferation. Surprisingly, these effects were not observed in cells genetically disrupted for NONO, which were instead resistant to NONO ligands. Reintroduction of wild-type NONO, but not a C145S mutant, restored ligand sensitivity in NONO-disrupted cells. The ligands promoted NONO accumulation in nuclear foci and stabilized NONO-RNA interactions, supporting a trapping mechanism that may prevent compensatory action of paralog proteins PSPC1 and SFPQ. These findings show that NONO can be co-opted by covalent small molecules to suppress protumorigenic transcriptional networks.


Subject(s)
DNA-Binding Proteins , Transcriptome , Male , Humans , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA
3.
Proteins ; 92(7): 819-829, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38337153

ABSTRACT

Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.


Subject(s)
Cysteine , Protein Binding , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ligands , Cysteine/chemistry , Cysteine/metabolism , Humans , Models, Molecular , Binding Sites , Databases, Protein
4.
5.
J Pharmacol Exp Ther ; 372(3): 339-353, 2020 03.
Article in English | MEDLINE | ID: mdl-31818916

ABSTRACT

The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.


Subject(s)
Brain/drug effects , Enzyme Inhibitors/pharmacology , Leukocytes, Mononuclear/drug effects , Monoacylglycerol Lipases/antagonists & inhibitors , Piperazines/pharmacology , Animals , Binding, Competitive , Brain/enzymology , Dose-Response Relationship, Drug , Enzyme Inhibitors/blood , Escherichia coli/enzymology , Escherichia coli/genetics , HeLa Cells , Humans , Kinetics , Leukocytes, Mononuclear/enzymology , Male , Mice, Inbred C57BL , Molecular Structure , Monoacylglycerol Lipases/genetics , Pain/drug therapy , Piperazines/blood , Protein Binding , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Sleep, REM/drug effects , Substrate Specificity
6.
Nat Commun ; 15(1): 6080, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030239

ABSTRACT

Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.


Subject(s)
Antiviral Agents , Dengue Virus , Dengue , Viral Nonstructural Proteins , Virus Replication , Dengue Virus/drug effects , Dengue Virus/genetics , Dengue Virus/physiology , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Antiviral Agents/pharmacology , Humans , Dengue/virology , Dengue/drug therapy , Serogroup , RNA Helicases/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Protein Binding , Animals , Organelles/metabolism , Organelles/drug effects , Viral Proteases , Aminophenols , Membrane Proteins , Indoles , DEAD-box RNA Helicases , Nucleoside-Triphosphatase , Butyrates
7.
Bioorg Med Chem Lett ; 22(1): 558-60, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22104145

ABSTRACT

Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.


Subject(s)
Escherichia coli/metabolism , Hydrolases/antagonists & inhibitors , Hydrolases/metabolism , Carbon/chemistry , Chemistry, Pharmaceutical/methods , Drug Design , Esters/chemistry , Humans , Kinetics , Models, Chemical , Permeability , Phenotype , Protein Binding , Ribonucleotides/chemistry , Substrate Specificity
8.
ACS Chem Biol ; 16(8): 1518-1525, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34286954

ABSTRACT

ß-Strands are a fundamental component of protein structure, and these extended peptide regions serve as binding epitopes for numerous protein-protein complexes. However, synthetic mimics that capture the conformation of these epitopes and inhibit selected protein-protein interactions are rare. Here we describe covalent and noncovalent ß-hairpin mimics of an extended strand region mediating the Tcf4/ß-catenin interaction. Our efforts afford a rationally designed lead for an underexplored region of ß-catenin, which has been the subject of numerous ligand discovery campaigns.


Subject(s)
Peptides, Cyclic/metabolism , Protein Binding/drug effects , Transcription Factor 4/metabolism , beta Catenin/metabolism , Amino Acid Sequence , Escherichia coli/chemistry , Escherichia coli Proteins/metabolism , Peptides, Cyclic/chemistry , Protein Conformation
9.
Tetrahedron ; 66(1): 63-67, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20644655

ABSTRACT

The structure of the ring-opened product from direct oxidation of meso-tetraarylporphyrins has been controversial for three decades. Herein we show that bilitrienones 2 are obtained from oxidation of metal-free dodecasubstituted porphyrins 1 in the presence of sodium nitrite, trifluoroacetic acid and air oxygen. The presence of the para-nonyl groups in 1b stabilized the corresponding bilitrienone 2b, which was characterized by X-ray crystallography. In the absence of the para-nonyl groups bilitrienone 2a undergoes a rapid hydration reaction, giving biladienone 3a as the major isolated product. The molecular structures of 2b and 3a, and. the photochemical isomerization of 3a are discussed.

10.
Bioorg Med Chem Lett ; 19(22): 6379-81, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19825512

ABSTRACT

A CEM cell cDNA T7 phage display library was prepared and used to screen for activating enzymes of phosphoramidate prodrugs of AZT monophosphate. Although, inefficient compared to ribonucleotide based phosphoramidates, hHint 1 was identified as the likely intracellular pronucleotide activating enzyme.


Subject(s)
Amides/chemistry , Bacteriophage T7/metabolism , Phosphoric Acids/chemistry , Zidovudine/metabolism , Amino Acids/metabolism , Anti-HIV Agents/metabolism , Cytarabine/pharmacology , Drug Delivery Systems , Drug Design , Humans , Peptide Library , Virus Replication
11.
Int J Mol Imaging ; 2016: 5768312, 2016.
Article in English | MEDLINE | ID: mdl-28050284

ABSTRACT

Human plasma-derived α1-antitrypsin (AAT) delivered by intravenous infusion is used as augmentation therapy in patients with emphysema who have a genetic mutation resulting in deficiency of AAT. Inhalation is an alternative route of administration that can potentially increase the efficacy and convenience of treatment. This study was conducted to determine whether delivery to the lungs, initially via the intratracheal (IT) route of administration, would deliver efficacious levels of a recombinant AAT (rAAT) to the site of action in the lungs in mice. 125I-radiolabeled rAAT, fluorophore-conjugated rAAT (rAAT-Alexa488), and NE680 (neutrophil elastase 680, a silent fluorescent substrate of neutrophil elastase which fluoresces in the near-infrared range upon activation by neutrophil elastase) were used to characterize the pharmacokinetics and tissue distribution profile, distribution of rAAT within the lung, and efficacy of rAAT to inhibit neutrophil elastase at the site of action, respectively. The study has demonstrated that rAAT was able to gain access to locations where neutrophil elastase was localized. The histochemical quantification of rAAT activity relative to dose at the site of action provided here will improve confidence in predicting the human dose via the inhalation route.

12.
PLoS One ; 6(7): e20897, 2011.
Article in English | MEDLINE | ID: mdl-21754980

ABSTRACT

Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both gram-negative and gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Alanine Dehydrogenase/metabolism , Biocatalysis , Escherichia coli K12/enzymology , Escherichia coli Proteins/metabolism , Acid Anhydride Hydrolases/antagonists & inhibitors , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/genetics , Alanine/genetics , Alanine/metabolism , Biological Transport , Escherichia coli K12/genetics , Escherichia coli K12/growth & development , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Genes, Bacterial/genetics , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/metabolism , Models, Molecular , Operon/genetics , Phenotype , Structure-Activity Relationship , Transcription, Genetic
13.
ACS Chem Biol ; 4(5): 367-77, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19351181

ABSTRACT

Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed. Here we report the synthesis of a novel class of histidine triad nucleotide binding protein (HINT)-dependent pronucleotides that interdict EMT by negatively regulating the association of eIF4E with the mRNA cap. Compound eIF4E inhibitor-1 potently inhibited cap-dependent translation in a dose-dependent manner in zebrafish embryos without causing developmental abnormalities and prevented eIF4E from triggering EMT in zebrafish ectoderm explants without toxicity. Metabolism studies with whole cell lysates demonstrated that the prodrug was rapidly converted into 7-BnGMP. Thus we have successfully developed the first nontoxic small molecule able to inhibit EMT, a key process in the development of epithelial cancer and tissue fibrosis, by targeting the interaction of eIF4E with the mRNA cap and demonstrated the tractability of zebrafish as a model organism for studying agents that modulate EMT. Our work provides strong motivation for the continued development of compounds designed to normalize cap-dependent translation as novel chemo-preventive agents and therapeutics for cancer and fibrosis.


Subject(s)
Drug Delivery Systems , Epithelium/embryology , Mesoderm/embryology , Nuclear Cap-Binding Protein Complex/antagonists & inhibitors , Nuclear Cap-Binding Protein Complex/metabolism , Zebrafish/embryology , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Base Sequence , Embryo, Nonmammalian/embryology , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Molecular Sequence Data , Neoplasms/metabolism , Phosphoric Acids/chemical synthesis , Phosphoric Acids/chemistry , Phosphoric Acids/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
14.
Mol Pharm ; 4(2): 208-17, 2007.
Article in English | MEDLINE | ID: mdl-17217311

ABSTRACT

To facilitate the delivery of nucleotide-based therapeutics to cells and tissues, a variety of pronucleotide approaches have been developed. Our laboratory and others have demonstrated that nucleoside phosphoramidates can be activated intracellularly to the corresponding 5'-monophosphate nucleotide and that histidine triad nucleotide binding proteins (Hints) are potentially responsible for their bioactivation. Hints are conserved and ubiquitous enzymes that hydrolyze phosphoramidate bonds between nucleoside 5'-monophosphate and an amine leaving group. On the basis of the ability of nucleosides to quench the fluorescence of covalently linked amines containing indole, a sensitive, continuous fluorescence-based assay was developed. A series of substrates linking the naturally fluorogenic indole derivatives to nucleoside 5'-monophosphates were synthesized, and their steady state kinetic parameters of hydrolysis by human Hint1 and Escherichia coli hinT were evaluated. To characterize the elemental and stereochemical effect on the reaction, two P-diastereoisomers of adenosine or guanosine phosphoramidothioates were synthesized and studied to reveal a 15-200-fold decrease in the specificity constant (kcat/Km) when the phosphoryl oxygen is replaced with sulfur. While a stereochemical preference was not observed for E. coli hinT, hHint1 exhibited a 300-fold preference for d-tryptophan phosphoramidates over l-isomers. The most efficient substrates evaluated to date are those that contain the less sterically hindering amine leaving group, tryptamine, with kcat and Km values comparable to those found for adenosine kinase. The apparent second-order rate constants (kcat/Km) for adenosine tryptamine phosphoramidate monoester were found to be 107 M-1 s-1 for hHint1 and 106 M-1 s-1 for E. coli hinT. Both the human and E. coli enzymes preferred purine over pyrimidine analogues. Consistent with observed hydrogen bonding between the 2'-OH group of adenosine monophosphate and the active site residue, Asp43, the second-order rate constant (kcat/Km) for thymidine tryptamine phosphoramidate was found to be 3-4 orders of magnitude smaller than that for uridine tryptamine phosphoramidate for hHint1 and 2 orders of magnitude smaller than that for E. coli hinT. Ara-A tryptamine phosphoramidate was, however, shown to be a good substrate with a specificity constant (kcat/Km) only 10-fold lower than the value for adenosine tryptamine phosphoramidate. Consequently, nucleoside phosphoramidates containing unhindered primary amines and either an alpha or beta 2'-OH group should be easily bioactivated by Hints with efficiencies rivaling those for the 5'-monophosphorylation of nucleosides by nucleoside kinases. The differential substrate specificity observed for human and E. coli enzymes represents a potential therapeutic rationale for the development of selective antibiotic phosphoramidate pronucleotides.


Subject(s)
Amides/chemistry , Amidohydrolases/chemistry , Escherichia coli/enzymology , Histidine/chemistry , Nucleotides/chemistry , Phosphoric Acids/chemistry , Binding Sites , Fluorescence , Humans , Hydrogen Bonding , Molecular Structure , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity
15.
J Biol Chem ; 282(20): 15137-47, 2007 May 18.
Article in English | MEDLINE | ID: mdl-17337452

ABSTRACT

Hint1 is a homodimeric protein and member of the ubiquitous HIT superfamily. Hint1 catalyzes the hydrolysis of purine phosphoramidates and lysyl-adenylate generated by lysyl-tRNA synthetase (LysRS). To determine the importance of homodimerization on the biological and catalytic activity of Hint1, the dimer interface of human Hint1 (hHint1) was destabilized by replacement of Val(97) of hHint1 with Asp, Glu, or Arg. The mutants were shown to exist as monomers in solution by a combination of size exclusion chromatograph, static light scattering, and chemically induced dimerization studies. Circular dichroism studies revealed little difference between the stability of the V97D, V97E, and wild-type hHint1. Relative to wild-type and the V97E mutant, however, significant perturbation of the V97D mutant structure was observed. hHint1 was shown to prefer 3-indolepropionic acyl-adenylate (AIPA) over tryptamine adenosine phosphoramidate monoester (TpAd). Wild-type hHint1 was found to be 277- and 1000-fold more efficient (k(cat)/K(m) values) than the V97E and V97D mutants, respectively. Adenylation of wild-type, V97D, and V97E hHint1 by human LysRS was shown to correlate with the mutant k(cat)/K(m) values using 3-indolepropionic acyl-adenylate as a substrate, but not tryptamine adenosine phosphoramidate monoester. Significant perturbations of the active site residues were not detected by molecular dynamics simulations of the hHint1s. Taken together, these results demonstrate that for hHint1; 1) the efficiency (k(cat)/K(m)) of acylated AMP hydrolysis, but not maximal catalytic turnover (k(cat)), is dependent on homodimerization and 2) the hydrolysis of lysyl-AMP generated by LysRS is not dependent on homodimerization if the monomer structure is similar to the wild-type structure.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Lysine-tRNA Ligase/chemistry , Nerve Tissue Proteins/chemistry , Adenosine Monophosphate/chemical synthesis , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Amino Acid Substitution , Binding Sites/genetics , Catalysis , Circular Dichroism , Dimerization , Enzyme Stability/genetics , Humans , Hydrolysis , Kinetics , Lysine-tRNA Ligase/metabolism , Mutagenesis, Site-Directed , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Structure, Tertiary/genetics , Substrate Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL