Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Publication year range
1.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32559462

ABSTRACT

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Subject(s)
RNA Caps/genetics , RNA Virus Infections/genetics , Recombinant Fusion Proteins/genetics , 5' Untranslated Regions/genetics , Animals , Cattle , Cell Line , Cricetinae , Dogs , Humans , Influenza A virus/metabolism , Mice , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Open Reading Frames/genetics , RNA Caps/metabolism , RNA Virus Infections/metabolism , RNA Viruses/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Fusion Proteins/metabolism , Transcription, Genetic/genetics , Viral Proteins/metabolism , Virus Replication/genetics
2.
Nat Immunol ; 18(4): 456-463, 2017 04.
Article in English | MEDLINE | ID: mdl-28192417

ABSTRACT

Immunodominance (ID) defines the hierarchical immune response to competing antigens in complex immunogens. Little is known regarding B cell and antibody ID despite its importance in immunity to viruses and other pathogens. We show that B cells and serum antibodies from inbred mice demonstrate a reproducible ID hierarchy to the five major antigenic sites in the influenza A virus hemagglutinin globular domain. The hierarchy changed as the immune response progressed, and it was dependent on antigen formulation and delivery. Passive antibody transfer and sequential infection experiments demonstrated 'original antigenic suppression', a phenomenon in which antibodies suppress memory responses to the priming antigenic site. Our study provides a template for attaining deeper understanding of antibody ID to viruses and other complex immunogens.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Host-Pathogen Interactions/immunology , Immunodominant Epitopes/immunology , Virus Diseases/immunology , Viruses/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Genetic Background , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Host-Pathogen Interactions/genetics , Immunization , Immunodominant Epitopes/chemistry , Immunologic Memory , Influenza A virus/immunology , Lymph Nodes/immunology , Mice , Models, Molecular , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Protein Conformation , Virus Diseases/genetics , Virus Diseases/virology
3.
Mol Cell ; 73(6): 1162-1173.e5, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30712990

ABSTRACT

The MHC class I antigen presentation system enables T cell immunosurveillance of cancers and viruses. A substantial fraction of the immunopeptidome derives from rapidly degraded nascent polypeptides (DRiPs). By knocking down each of the 80 ribosomal proteins, we identified proteins that modulate peptide generation without altering source protein expression. We show that 60S ribosomal proteins L6 (RPL6) and RPL28, which are adjacent on the ribosome, play opposite roles in generating an influenza A virus-encoded peptide. Depleting RPL6 decreases ubiquitin-dependent peptide presentation, whereas depleting RPL28 increases ubiquitin-dependent and -independent peptide presentation. 40S ribosomal protein S28 (RPS28) knockdown increases total peptide supply in uninfected cells by increasing DRiP synthesis from non-canonical translation of "untranslated" regions and non-AUG start codons and sensitizes tumor cells for T cell targeting. Our findings raise the possibility of modulating immunosurveillance by pharmaceutical targeting ribosomes.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I/biosynthesis , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , T-Lymphocytes/metabolism , Animals , Cell Line, Tumor , Coculture Techniques , HEK293 Cells , Histocompatibility Antigens Class I/immunology , Host-Pathogen Interactions , Humans , Immunologic Surveillance , Influenza A virus/immunology , Influenza A virus/pathogenicity , Melanoma/immunology , Melanoma/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/virology
4.
Mol Ecol ; 33(3): e17230, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38078558

ABSTRACT

Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest-dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation-by-distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas.


Subject(s)
Animals, Wild , Metagenomics , Animals , Humans , Urban Population , Ecosystem , Sciuridae/genetics
5.
Immunity ; 42(3): 524-37, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25769612

ABSTRACT

CD8(+) T cells play a critical role in limiting peripheral virus replication, yet how they locate virus-infected cells within tissues is unknown. Here, we have examined the environmental signals that CD8(+) T cells use to localize and eliminate virus-infected skin cells. Epicutaneous vaccinia virus (VV) infection, mimicking human smallpox vaccination, greatly increased expression of the CXCR3 chemokine receptor ligands CXCL9 and CXCL10 in VV-infected skin. Despite normal T cell numbers in the skin, Cxcr3(-/-) mice exhibited dramatically impaired CD8(+)-T-cell-dependent virus clearance. Intravital microscopy revealed that Cxcr3(-/-) T cells were markedly deficient in locating, engaging, and killing virus-infected cells. Further, transfer of wild-type CD8(+) T cells restored viral clearance in Cxcr3(-/-) animals. These findings demonstrate a function for CXCR3 in enhancing the ability of tissue-localized CD8(+) T cells to locate virus-infected cells and thereby exert anti-viral effector functions.


Subject(s)
Keratinocytes/immunology , Poxviridae Infections/immunology , Receptors, CXCR3/immunology , Skin/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccinia virus/immunology , Adoptive Transfer , Animals , Cell Movement , Chemokine CXCL10/genetics , Chemokine CXCL10/immunology , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Female , Gene Expression Regulation , Humans , Keratinocytes/pathology , Keratinocytes/virology , Mice, Transgenic , Poxviridae Infections/genetics , Poxviridae Infections/pathology , Poxviridae Infections/virology , Receptors, CXCR3/deficiency , Receptors, CXCR3/genetics , Signal Transduction , Skin/pathology , Skin/virology , T-Lymphocytes, Cytotoxic/pathology , T-Lymphocytes, Cytotoxic/transplantation , Viral Load
6.
J Immunol ; 208(10): 2273-2282, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35428693

ABSTRACT

Successful direct MHC class I Ag presentation is dependent on the protein degradation machinery of the cell to generate antigenic peptides that can be loaded onto MHC class I molecules for surveillance by CD8+ T cells of the immune system. Most often this process involves the ubiquitin (Ub)-proteasome system; however, other Ub-like proteins have also been implicated in protein degradation and direct Ag presentation. In this article, we examine the role of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) in direct Ag presentation in mouse cells. NEDD8 is the Ub-like protein with highest similarity to Ub, and fusion of NEDD8 to the N terminus of a target protein can lead to the degradation of target proteins. We find that appending NEDD8 to the N terminus of the model Ag OVA resulted in degradation by both the proteasome and the autophagy protein degradation pathways, but only proteasomal degradation, involving the proteasomal subunit NEDD8 ultimate buster 1, resulted in peptide presentation. When directly compared with Ub, NEDD8 fusion was less efficient at generating peptides. However, inactivation of the NEDD8-conugation machinery by treating cells with MLN4924 inhibited the presentation of peptides from the defective ribosomal product-derived form of a model Ag. These results demonstrate that NEDD8 activity in the cell is important for direct Ag presentation, but not by directly targeting proteins for degradation.


Subject(s)
Antigen Presentation , Proteasome Endopeptidase Complex , Animals , CD8-Positive T-Lymphocytes/metabolism , Cyclopentanes , Mice , NEDD8 Protein/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteins , Pyrimidines , Ubiquitin/metabolism , Ubiquitins/metabolism
7.
Heredity (Edinb) ; 128(4): 261-270, 2022 04.
Article in English | MEDLINE | ID: mdl-35217806

ABSTRACT

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.


Subject(s)
Turtles , Animals , DNA, Mitochondrial/genetics , Ecuador , Genome , Haplotypes , Humans , Microsatellite Repeats , Museums , Phylogeny , Turtles/genetics
8.
J Immunol ; 202(12): 3370-3380, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31092636

ABSTRACT

The importance of antiviral CD8+ T cell recognition of alternative reading frame (ARF)-derived peptides is uncertain. In this study, we describe an epitope (NS1-ARF21-8) present in a predicted 14-residue peptide encoded by the +1 register of NS1 mRNA in the influenza A virus (IAV). NS1-ARF21-8 elicits a robust, highly functional CD8+ T cell response in IAV-infected BALB/c mice. NS1-ARF21-8 is presented from unspliced NS mRNA, likely from downstream initiation on a Met residue that comprises the P1 position of NS1-ARF21-8 Derived from a 14-residue peptide with no apparent biological function and negligible impacts on IAV infection, infectivity, and pathogenicity, NS1-ARF21-8 provides a clear demonstration of how immunosurveillance exploits natural errors in protein translation to provide antiviral immunity. We further show that IAV infection enhances a model cellular ARF translation, which potentially has important implications for virus-induced autoimmunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/metabolism , Influenza A virus/physiology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , Viral Nonstructural Proteins/metabolism , Alternative Splicing , Animals , Disease Models, Animal , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunologic Surveillance , Mice , Mice, Inbred BALB C , Open Reading Frames/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
9.
J Immunol ; 201(4): 1222-1228, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30012850

ABSTRACT

Probing the limits of CD8+ T cell immunosurveillance, we inserted the SIINFEKL peptide into influenza A virus (IAV)-negative strand gene segments. Although IAV genomic RNA is considered noncoding, there is a conserved, relatively long open reading frame present in segment 8, encoding a potential protein termed NEG8. The biosynthesis of NEG8 from IAV has yet to be demonstrated. Although we failed to detect NEG8 protein expression in IAV-infected mouse cells, cell surface Kb-SIINFEKL complexes are generated when SIINFEKL is genetically appended to the predicted C terminus of NEG8, as shown by activation of OT-I T cells in vitro and in vivo. Moreover, recombinant IAV encoding of SIINFEKL embedded in the negative strand of the neuraminidase-stalk coding sequence also activates OT-I T cells in mice. Together, our findings demonstrate both the translation of sequences on the negative strand of a single-stranded RNA virus and its relevance in antiviral immunosurveillance.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Surveillance/immunology , Influenza A virus/genetics , Influenza A virus/immunology , RNA, Viral/immunology , Animals , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Orthomyxoviridae Infections/immunology , Protein Biosynthesis/physiology , RNA, Viral/genetics
10.
Int Orthop ; 44(9): 1655-1660, 2020 09.
Article in English | MEDLINE | ID: mdl-32367231

ABSTRACT

PURPOSE: The purpose of this study was to assess survival rate, functional and radiological outcomes when using a hydroxyapatite-ceramic fully coated primary femoral stem in revision total hip arthroplasty. METHODS: Patients who underwent revision total hip arthroplasty using the Furlong hydroxyapatite-ceramic (HAC)-coated (Joint Replacement Instrumentation Ltd., Sheffield, UK) primary stem were retrospectively identified between 2013 and 2017. A total of 30 hips in 27 patients were identified and the mean follow-up duration was 44 months. Post-operative radiographs were scrutinized for signs of component loosening by two independent assessors. Patient's functional outcomes were assessed using the Oxford hip score and compared pre- and post-operatively. The prevalence of thigh pain was assessed at the latest follow-up. RESULTS: The most common cause of revision was adverse reactions to metal debris (ARMD) (46.6%). The overall complication rate was 13.3%. Results at final follow-up demonstrated 100% survival rate and no reported incidence of thigh pain. Using paired t test, all patients had a statistically significant (P < 0.05) improvement in post-operative mean Oxford hip score of 35 compared to a mean pre-operative score of 14. Radiographic analysis of the latest follow-up radiographs revealed no signs of component loosening or component subsidence. CONCLUSION: With a 100% survival rate and excellent reported functional outcomes, we believe that our experience and results support the use of primary cementless stems in selected revision cases.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Arthroplasty, Replacement, Hip/adverse effects , Ceramics , Durapatite , Follow-Up Studies , Hip Prosthesis/adverse effects , Humans , Prosthesis Design , Prosthesis Failure , Reoperation , Retrospective Studies , Treatment Outcome
11.
Conserv Biol ; 33(6): 1404-1414, 2019 12.
Article in English | MEDLINE | ID: mdl-30901116

ABSTRACT

Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.


Reproducción en Cautiverio Informada Genéticamente de Híbridos de una Especie Extinta de Tortuga de las Galápagos Resumen La hibridación representa un obstáculo importante para la conservación de especies ya que amenaza tanto a la integridad genética como al potencial adaptativo. Aun así, la hibridación ocasionalmente puede ofrecer una oportunidad sin precedentes para la recuperación de una especie si el genoma de un taxón extinto está presente entre los híbridos vivientes de tal manera que la reproducción selectiva pudiera recuperarlo. Exploramos los elementos de diseño para el establecimiento de un programa de reproducción en cautiverio de la tortuga de las Galápagos (Chelonoidis spp.) construido en torno a los individuos con linajes mixtos que incluyeran una especie extinta. Los individuos fueron los híbridos de la especie extinta en la Isla Floreana, C. niger, y la especie viviente C. becki, encontrados recientemente en la distribución geográfica endémica de la segunda especie en el Volcán Wolf (Isla Isabela). Combinamos los datos genotípicos de 35 tortugas con un linaje cargado de C. niger usando simulaciones futuras de la descendencia generada por el programa para explorar las estrategias de reproducción en cautiverio que maximizaran en general la diversidad genética y el linaje de C. niger a la vez que se ajustaba a las restricciones de recursos, la biología de la especie y la urgencia por regresar las tortugas a la Isla Floreana para facilitar la restauración del ecosistema. En general, la diversidad genética se maximizó cuando en la simulación las tortugas estuvieron organizadas en grupos de reproducción relativamente pequeños y cuando cantidades sustanciales del genoma de C. niger fueron capturados con base en los recursos disponibles para reproducir selectivamente a las tortugas en cautiverio. La diversidad genética se vio especialmente maximizada cuando las crías reproducidas en cautiverio fueron liberadas en lugar de ser utilizadas como reproductoras adicionales. Nuestros resultados proporcionan una guía práctica y basada en la genética para la inclusión de híbridos con representación genómica de un taxón extinto en los programas de restauración de especies. Cuando incorporamos a los híbridos con diversidad genética que previamente se creía perdida en los programas con el propósito de la reintroducción de especies, nuestro estudio informa al debate continuo sobre el valor de los híbridos para la conservación de la biodiversidad.


Subject(s)
Turtles , Animals , Breeding , Conservation of Natural Resources , Ecosystem , Islands
12.
J Immunol ; 198(10): 3835-3845, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28363906

ABSTRACT

CD8+ T cell immunosurveillance is based on recognizing oligopeptides presented by MHC class I molecules. Despite decades of study, the importance of protein ubiquitylation to peptide generation remains uncertain. In this study, we examined the ability of MLN7243, a recently described ubiquitin-activating enzyme E1 inhibitor, to block overall cytosolic peptide generation and generation of specific peptides from vaccinia- and influenza A virus-encoded proteins. We show that MLN7243 rapidly inhibits ubiquitylation in a variety of cell lines and can profoundly reduce the generation of cytosolic peptides. Kinetic analysis of specific peptide generation reveals that ubiquitylation of defective ribosomal products is rate limiting in generating class I peptide complexes. More generally, our findings demonstrate that the requirement for ubiquitylation in MHC class I-restricted Ag processing varies with class I allomorph, cell type, source protein, and peptide context. Thus, ubiquitin-dependent and -independent pathways robustly contribute to MHC class I-based immunosurveillance.


Subject(s)
Antigen Presentation , Histocompatibility Antigens Class I/immunology , Nucleosides/pharmacology , Peptides/immunology , Sulfonamides/pharmacology , T-Lymphocytes/immunology , Animals , Cell Line , Cytosol/chemistry , Cytosol/immunology , Enzyme Inhibitors/pharmacology , Histocompatibility Antigens Class I/metabolism , Humans , Influenza A virus/chemistry , Influenza A virus/immunology , Kinetics , Ligands , Mice , Monitoring, Immunologic , Peptides/metabolism , Pyrazoles , Pyrimidines , Sulfides , Ubiquitination , Vaccinia virus/chemistry , Vaccinia virus/immunology
13.
Environ Manage ; 64(1): 40-51, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31161233

ABSTRACT

Integrating traditional ecological knowledge (TEK) with remote sensing capabilities to monitor rangeland dynamics could lead to more acceptable, efficient, and beneficial rangeland management schemes for stakeholders of grazing systems. We contrasted pastoralists' perception of summer pasture quality in the Altai Mountains of Central Asia with normalized difference vegetation index (NDVI) metrics obtained from Terra Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor. The spatial relationship between satellite-based assessment of the grassland quality and on-the-ground evaluation by local herders was first assessed for a single year using 49, 1 × 1 km grassland blocks sampled in July 2013. Herder-derived forage value was positively and strongly (63% of variance explained) related to satellite-derived NDVI values (MODIS 1 km monthly data, MOD13A3) as well as field estimates of % vegetation cover (62% explained) and to a lesser degree to vegetation height (28% explained). Herders' multi-year perception (i.e., recall ability) was also contrasted with satellite observations of their herding areas over the period of 2006-2016 during which NDVI temporal anomaly explained >11% of variance in estimates of pasture quality recalled. Few herders in Kazakhstan could recall pasture conditions, most herders in Russia and China could but inconsistently (4 and 7% variation explained, respectively), whereas most herders in Mongolia could recall pasture conditions in strong agreement with NDVI anomaly (30% variation explained), patterns reflecting herders' regional dependence on herding as a livelihood. Corroboration of herder-derived estimates and satellite-derived vegetation indices creates opportunity for re-expression of satellite data in map form as TEK-derived indices more compatible with herder perceptions.


Subject(s)
Ecology , Remote Sensing Technology , China , Environmental Monitoring , Mongolia , Satellite Imagery
14.
Foot Ankle Surg ; 25(6): 782-784, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30686540

ABSTRACT

BACKGROUND: Traditional fracture clinics are some of the busiest clinics in a hospital, often with significant patient waiting times and delays. The use of virtual fracture clinic (VFC) for the management of certain injuries to reduce the workload on the traditional fracture clinic, in addition to reducing costs is growing in popularity. The tendoachilles is the most frequently ruptured tendon in the body but despite this, management remains a keenly debated topic. METHODS: All adult patients referred to the VFC with an actual or suspected Achilles tendon rupture were identified between January 2015 to October 2017. RESULTS: This study found that patient with and acute achilles tendon ruptures managed according to a standardised VFC protocol had a re-rupture rate of 3.82%. CONCLUSIONS: One of the advantages of a VFC model that is standardised, initiated in the ED, is that it has no variation in outcome seen in our patient group.


Subject(s)
Achilles Tendon/injuries , Telemedicine , Achilles Tendon/diagnostic imaging , Achilles Tendon/surgery , Conservative Treatment , Female , Humans , Male , Middle Aged , Referral and Consultation , Reproducibility of Results , Rupture/diagnosis , Rupture/therapy , Ultrasonography , United Kingdom
16.
J Immunol ; 196(9): 3608-17, 2016 05 01.
Article in English | MEDLINE | ID: mdl-27016602

ABSTRACT

Influenza A virus gene segment 7 encodes two proteins: the M1 protein translated from unspliced mRNA and the M2 protein produced by mRNA splicing and largely encoded by the M1 +1 reading frame. To better understand the generation of defective ribosomal products relevant to MHC class I Ag presentation, we engineered influenza A virus gene segment 7 to encode the model H-2 K(b) class I peptide ligand SIINFEKL at the M2 protein C terminus. Remarkably, after treating virus-infected cells with the RNA splicing inhibitor spliceostatin A to prevent M2 mRNA generation, K(b)-SIINFEKL complexes were still presented on the cell surface at levels ≤60% of untreated cells. Three key findings indicate that SIINFEKL is produced by cytoplasmic translation of unspliced M1 mRNA initiating at CUG codons within the +1 reading frame: 1) synonymous mutation of CUG codons in the M2-reading frame reduced K(b)-SIINFEKL generation; 2) K(b)-SIINFEKL generation was not affected by drug-mediated inhibition of AUG-initiated M1 synthesis; and 3) K(b)-SIINFEKL was generated in vitro and in vivo from mRNA synthesized in the cytoplasm by vaccinia virus, and hence cannot be spliced. These findings define a viral defective ribosomal product generated by cytoplasmic noncanonical translation and demonstrate the participation of CUG-codon-based translation initiation in pathogen immunosurveillance.


Subject(s)
Defective Viruses/genetics , Influenza A virus/genetics , Peptides/genetics , Ribosomes/metabolism , Viral Matrix Proteins/genetics , Animals , Antigen Presentation/drug effects , Cell Line , Defective Viruses/chemistry , Defective Viruses/drug effects , Defective Viruses/metabolism , Genes, MHC Class I , HeLa Cells , Humans , Influenza A virus/chemistry , Influenza A virus/drug effects , Influenza A virus/metabolism , Mice , Mice, Inbred C57BL , Peptides/chemistry , Protein Biosynthesis , Pyrans/pharmacology , RNA Splicing/drug effects , Spiro Compounds/pharmacology
17.
J Hered ; 109(6): 611-619, 2018 08 24.
Article in English | MEDLINE | ID: mdl-29986032

ABSTRACT

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.


Subject(s)
Genetic Speciation , Genetic Variation , Turtles/genetics , Animals , DNA, Mitochondrial , Genome , Microsatellite Repeats , Polymorphism, Single Nucleotide , Turtles/classification
18.
Immunity ; 28(6): 787-98, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18549799

ABSTRACT

The nature of crosspriming immunogens for CD8(+) T cell responses is highly controversial. By using a panel of T cell receptor-like antibodies specific for viral peptides bound to mouse D(b) major histocompatibility complex class I molecules, we show that an exceptional peptide (PA(224-233)) expressed as a viral minigene product formed a sizeable cytosolic pool continuously presented for hours after protein synthesis was inhibited. PA(224-233) pool formation required active cytosolic heat-shock protein 90 but not ER g96 and uniquely enabled crosspriming by this peptide. These findings demonstrate that exceptional class I binding oligopeptides that escape proteolytic degradation are potent crosspriming agents. Thus, the feeble immunogenicity of natural proteasome products in crosspriming can be attributed to their evanescence in donor cells and not an absolute inability of cytosolic oligopeptides to be transferred to and presented by professional antigen-presenting cells.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/metabolism , HSP90 Heat-Shock Proteins/metabolism , Histocompatibility Antigens Class I/immunology , Influenza A virus/immunology , Peptides/immunology , Animals , Antibodies/immunology , Antigens, Viral/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Line , Female , HSP90 Heat-Shock Proteins/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Mice , Peptides/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/metabolism
19.
Ecotoxicology ; 26(6): 762-771, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28444511

ABSTRACT

Spatial scale is rarely considered in population-level assessments of contaminant impacts on wild animals; as a result misinterpretation of the relationship between contaminant exposure and population status may occur. We assessed the strength of expression of polychlorinated biphenyl (PCB) exposure effects at local vs. regional spatial scales on population status in five species of waterbirds, "bioaccumulators" often promoted as indicators of contaminant effects in aquatic ecosystems. Our focus was the upper Hudson River where PCBs occur at levels reported to have adverse impacts on wild birds. At the local scale, waterbird habitat occupancy was estimated from 220 repeat surveys made between 2001 and 2010 along the same survey route divided into 25 contiguous river segments with markedly different PCB concentrations. At the regional scale, waterbird habitat occupancy in relation to proximity to the upper Hudson River was estimated across 1248 Breeding Bird Atlas survey blocks while controlling for region-wide variation in habitat availability. At the local scale, many associations of habitat and sampling covariates with species detection probabilities were evident but none, including PCB concentration, with habitat occupancy, extinction or colonization of a given river segment. At the regional scale, survey effort and habitat factors not related to PCB exposure were the most important drivers of waterbird occurrence although two species were more likely to occur farther from the contaminated river segment. Spatial scale clearly mediates expression of contaminant impacts on wild bird populations; large-scale, expert-generated databases provide an underused opportunity for better delineating the spatial scales at which population impacts occur and risk assessments should be performed.


Subject(s)
Ecosystem , Environmental Exposure/statistics & numerical data , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Birds , Environmental Exposure/analysis , Environmental Monitoring
20.
J Biol Chem ; 290(26): 16431-9, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25971973

ABSTRACT

Green fluorescent protein (GFP) and other fluorescent proteins are essential tools for biological research. When fused to peptides or proteins as a reporter, GFP enables localization and quantitation of gene products in otherwise unmanipulated live cells or organisms. We previously reported that a sizable fraction of nascent GFP is post-translationally converted into a 20-kDa Triton X-100-insoluble proteasome substrate (Qian, S. B., Princiotta, M. F., Bennink, J. R., and Yewdell, J. W. (2006) J. Biol. Chem. 281, 392-400; Dolan, B. P., Li, L., Veltri, C. A., Ireland, C. M., Bennink, J. R., and Yewdell, J. W. (2011) J. Immunol. 186, 2065-2072). Here, we show that a similarly sized fragment is generated by all GFP and red fluorescent protein family members we examined. We demonstrate that fragmentation is a by-product of GFP chromophore rearrangement. A non-rearranging GFP mutant fails to fragment and generates diminished levels of K(b)-SIINFEKL complexes when SIINFEKL is genetically fused to either the C- or N-terminal domains of GFP fusion proteins. Instructively, another fragmenting GFP mutant that cannot create the functional chromophore but still generates fragments also demonstrates diminished K(b)-SIINFEKL generation. However, the mutant and wild-type fragments differ fundamentally in that wild-type fragments are rapidly liberated from the intact molecule and degraded quickly, accounting for increased K(b)-SIINFEKL generation. In the fragmenting mutant, the fragments are generated slowly and remain associated, likely in a native conformation based on their original structural description (Barondeau, D. P., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2006) J. Am. Chem. Soc. 128, 4685-4693). The wild-type GFP fragments represent the first biochemically defined natural defective ribosomal products to contribute peptides for immunosurveillance, enabling quantitation of peptide generation efficiency from this source of defective ribosomal products. More broadly, given the wide use of fluorescent proteins, their ubiquitous and abundant fragmentation must be considered when interpreting experiments using these extremely useful probes.


Subject(s)
Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry , Peptide Fragments/immunology , Antigen Presentation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , HeLa Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/immunology , Monitoring, Immunologic , Peptide Fragments/chemistry , Peptide Fragments/genetics , Red Fluorescent Protein
SELECTION OF CITATIONS
SEARCH DETAIL