Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Mol Ther ; 32(8): 2711-2727, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38943249

ABSTRACT

Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.


Subject(s)
Killer Cells, Natural , NK Cell Lectin-Like Receptor Subfamily C , Xenograft Model Antitumor Assays , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/metabolism , Animals , Mice , Cell Line, Tumor , HLA-E Antigens , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Antibodies, Monoclonal/pharmacology , CRISPR-Cas Systems , Gene Deletion , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Cytotoxicity, Immunologic
2.
Proc Natl Acad Sci U S A ; 119(14): e2121133119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35363568

ABSTRACT

Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.


Subject(s)
Atherosclerosis , Chaperone-Mediated Autophagy , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Chaperone-Mediated Autophagy/genetics , Disease Models, Animal , Lysosomes/metabolism , Mice
3.
Haematologica ; 108(7): 1873-1885, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36475519

ABSTRACT

The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Animals , Mice , Corticosterone/pharmacology , Adipocytes , Obesity , Inflammation , CD40 Antigens/genetics , CD40 Ligand , Hematopoiesis , Mice, Inbred C57BL
4.
Circ Res ; 124(1): 94-100, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30582442

ABSTRACT

RATIONALE: Several studies have suggested a role for the gut microbiota in inflammation and atherogenesis. A causal relation relationship between gut microbiota, inflammation, and atherosclerosis has not been explored previously. OBJECTIVE: Here, we investigated whether a proinflammatory microbiota from Caspase1-/- ( Casp1-/-) mice accelerates atherogenesis in Ldlr-/- mice. METHOD AND RESULTS: We treated female Ldlr-/- mice with antibiotics and subsequently transplanted them with fecal microbiota from Casp1-/- mice based on a cohousing approach. Autologous transplantation of fecal microbiota of Ldlr-/- mice served as control. Mice were cohoused for 8 or 13 weeks and fed chow or high-fat cholesterol-rich diet. Fecal samples were collected, and factors related to inflammation, metabolism, intestinal health, and atherosclerotic phenotypes were measured. Unweighted Unifrac distances of 16S rDNA (ribosomal DNA) sequences confirmed the introduction of the Casp1-/- and Ldlr-/- microbiota into Ldlr-/- mice (referred to as Ldlr-/-( Casp1-/-) or Ldlr-/-( Ldlr-/-) mice). Analysis of atherosclerotic lesion size in the aortic root demonstrated a significant 29% increase in plaque size in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) mice compared with Ldlr-/-( Ldlr-/-) mice. We found increased numbers of circulating monocytes and neutrophils and elevated proinflammatory cytokine levels in plasma in high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. Neutrophil accumulation in the aortic root of Ldlr-/-( Casp1-/-) mice was enhanced compared with Ldlr-/-( Ldlr-/-) mice. 16S-rDNA-encoding sequence analysis in feces identified a significant reduction in the short-chain fatty acid-producing taxonomies Akkermansia, Christensenellaceae, Clostridium, and Odoribacter in Ldlr-/-( Casp1-/-) mice. Consistent with these findings, cumulative concentrations of the anti-inflammatory short-chain fatty acids propionate, acetate and butyrate in the cecum were significantly reduced in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. CONCLUSIONS: Introduction of the proinflammatory Casp1-/- microbiota into Ldlr-/- mice enhances systemic inflammation and accelerates atherogenesis.


Subject(s)
Aorta/metabolism , Aortic Diseases/microbiology , Atherosclerosis/microbiology , Bacteria/metabolism , Cytokines/metabolism , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Inflammation Mediators/metabolism , Inflammation/microbiology , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Caspase 1/genetics , Caspase 1/metabolism , Disease Models, Animal , Disease Progression , Dysbiosis , Fatty Acids/metabolism , Female , Host-Pathogen Interactions , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice, Knockout , Plaque, Atherosclerotic , Receptors, LDL/genetics , Receptors, LDL/metabolism , Time Factors
5.
J Thromb Thrombolysis ; 52(3): 715-719, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34052976

ABSTRACT

Murine atherosclerosis models are key for investigation of atherosclerosis pathophysiology and drug development. However, they do not feature spontaneous atherothrombosis as a final stage of atherosclerosis. Transgenic mice expressing both the human mutant apolipoprotein E form APOE*3-Leiden and human cholesteryl ester transfer protein (CETP), i.e. APOE*3-Leiden.CETP mice, feature a moderate hyperlipoproteinemia and atherosclerosis phenotype. In contrast to apolipoprotein E deficient (Apoe-/-) mice, APOE*3-Leiden.CETP mice respond well to lipid-lowering and anti-atherosclerotic drugs. The aim of the study was to investigate whether silencing of anticoagulant Protein C (Proc) allows APOE*3-Leiden.CETP mice to feature thrombosis as a final stage of atherosclerosis. Female APOE*3-Leiden.CETP mice were fed a Western-type diet to induce advanced atherosclerosis, followed by an injection with a small interfering RNA targeting Proc (siProc). Presence of atherosclerosis and atherothrombosis was determined by histologic analysis of the aortic root. Atherosclerosis severity in the aortic root area of APOE*3-Leiden.CETP mice varied from type "0" (no lesions) to type "V" lesions (advanced and complex lesions). Atherothrombosis following siProc injection was observed for 4 out of 21 APOE*3-Leiden.CETP mice (19% incidence). The atherothrombosis presented as large, organized, fibrin- and leukocyte-rich thrombi on top of advanced (type "V") atherosclerotic plaques in the aortic root. This atherothrombosis was comparable in appearance and incidence as previously reported for Apoe-/- mice with a more severe atherosclerosis (19% incidence). APOE*3-Leiden.CETP mice with modest hyperlipidemia and atherosclerosis can develop atherothrombosis upon transient Proc-silencing. This further extends the use of these mice as a test model for lipid-lowering and anti-atherosclerotic drugs.


Subject(s)
Atherosclerosis , Thrombosis , Animals , Apolipoproteins E , Atherosclerosis/genetics , Cholesterol Ester Transfer Proteins/genetics , Female , Lipids , Mice , Mice, Transgenic , Pharmaceutical Preparations , Protein C
6.
Arterioscler Thromb Vasc Biol ; 38(8): 1785-1795, 2018 08.
Article in English | MEDLINE | ID: mdl-29903737

ABSTRACT

Objective- The E3 ubiquitin ligase IDOL (inducible degrader of the LDLR [LDL (low-density lipoprotein) receptor]) is a post-transcriptional regulator of LDLR abundance. Model systems and human genetics support a role for IDOL in regulating circulating LDL levels. Whether IDOL plays a broader metabolic role and affects development of metabolic syndrome-associated comorbidities is unknown. Approach and Results- We studied WT (wild type) and Idol(-/-) (Idol-KO) mice in 2 models: physiological aging and diet-induced obesity. In both models, deletion of Idol protected mice from metabolic dysfunction. On a Western-type diet, Idol loss resulted in decreased circulating levels of cholesterol, triglycerides, glucose, and insulin. This was accompanied by protection from weight gain in short- and long-term dietary challenges, which could be attributed to reduced hepatosteatosis and fat mass in Idol-KO mice. Although feeding and intestinal fat uptake were unchanged in Idol-KO mice, their brown adipose tissue was protected from lipid accumulation and had elevated expression of UCP1 (uncoupling protein 1) and TH (tyrosine hydroxylase). Indirect calorimetry indicated a marked increase in locomotion and suggested a trend toward increased cumulative energy expenditure and fat oxidation. An increase in in vivo clearance of reconstituted lipoprotein particles in Idol-KO mice may sustain this energetic demand. In the BXD mouse genetic reference population, hepatic Idol expression correlates with multiple metabolic parameters, thus providing support for findings in the Idol-KO mice. Conclusions- Our study uncovers an unrecognized role for Idol in regulation of whole body metabolism in physiological aging and on a Western-type diet. These findings support Idol inhibition as a therapeutic strategy to target multiple metabolic syndrome-associated comorbidities.


Subject(s)
Diet, High-Fat , Energy Metabolism , Liver/enzymology , Metabolic Syndrome/prevention & control , Obesity/prevention & control , Ubiquitin-Protein Ligases/deficiency , Adipogenesis , Adipose Tissue, Brown/enzymology , Adiposity , Age Factors , Aging , Animals , Biomarkers/blood , Blood Glucose/metabolism , Cholesterol/blood , Disease Models, Animal , Female , Insulin/blood , Locomotion , Male , Metabolic Syndrome/blood , Metabolic Syndrome/enzymology , Metabolic Syndrome/genetics , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Obesity/blood , Obesity/enzymology , Obesity/genetics , Triglycerides/blood , Tyrosine 3-Monooxygenase/metabolism , Ubiquitin-Protein Ligases/genetics , Uncoupling Protein 1/metabolism
7.
J Surg Res ; 229: 271-276, 2018 09.
Article in English | MEDLINE | ID: mdl-29937000

ABSTRACT

BACKGROUND: Hernia repair is one of the most frequently performed operations. In search of the ideal mesh for hernia repair, animal research is required. Although rats are most often used in experimental mesh experiments, no correlation with clinical findings in humans has ever been shown. Therefore, the aim of our study was to investigate whether adhesion formation and foreign body reactions to meshes in rats are comparable with the reactions in humans. MATERIALS AND METHODS: A fixed type of mesh was implanted intraperitoneally in a group of 10 rats and 10 patients undergoing elective, temporary stoma formation. In case of the latter, meshes were placed around the stoma. After a follow-up period of 12 wk in rats and after a median follow-up of 6 mo in humans, samples of the mesh were collected. Adhesion assessments were performed, and (immuno-) histochemical evaluation was performed by a specialized experimental pathologist and an experienced clinical pathologist. RESULTS: After the follow-up period, adhesion formation did not differ significantly between rats and humans. Moreover, general inflammation scores were comparable, although granulocytes and giant cells were more present in rats, compared with humans. On the other hand, the presence of fibrosis was more evident in humans compared with rats. CONCLUSIONS: To our knowledge, this is the first study, which showed that a specific animal model, namely a rat model, correlates with adhesion formation and the foreign body reaction to meshes in humans. It can be recommended to use rats in future experimental mesh for incisional hernia research.


Subject(s)
Disease Models, Animal , Foreign-Body Reaction/pathology , Hernia, Abdominal/surgery , Herniorrhaphy/adverse effects , Rats , Surgical Mesh/adverse effects , Tissue Adhesions/pathology , Abdominal Wall/pathology , Abdominal Wall/surgery , Aged , Animals , Female , Fibrosis , Follow-Up Studies , Foreign-Body Reaction/etiology , Herniorrhaphy/instrumentation , Humans , Male , Middle Aged , Peritoneal Cavity/pathology , Rats, Wistar , Species Specificity , Tissue Adhesions/etiology
8.
Arterioscler Thromb Vasc Biol ; 37(5): 782-785, 2017 05.
Article in English | MEDLINE | ID: mdl-28302625

ABSTRACT

OBJECTIVE: Murine atherosclerosis models do not spontaneously develop atherothrombotic complications. We investigated whether disruption of natural anticoagulation allows preexisting atherosclerotic plaques to progress toward an atherothrombotic phenotype. APPROACH AND RESULTS: On lowering of plasma protein C levels with small interfering RNA (siProc) in 8-week Western-type diet-fed atherosclerotic apolipoprotein E-deficient mice, 1 out of 4 mice displayed a large, organized, and fibrin- and leukocyte-rich thrombus on top of an advanced atherosclerotic plaque located in the aortic root. Although again at low incidence (3 in 25), comparable thrombi at the same location were observed during a second independent experiment in 9-week Western-type diet-fed apolipoprotein E-deficient mice. Mice with thrombi on their atherosclerotic plaques did not show other abnormalities and had equally lowered plasma protein C levels as siProc-treated apolipoprotein E-deficient mice without thrombi. Fibrinogen and thrombin-antithrombin concentrations and blood platelet numbers were also comparable, and plaques in siProc mice with thrombi had a similar composition and size as plaques in siProc mice without thrombi. Seven out of 25 siProc mice featured clots in the left atrium of the heart. CONCLUSIONS: Our findings indicate that small interfering RNA-mediated silencing of protein C in apolipoprotein E-deficient mice creates a condition that allows the occurrence of spontaneous atherothrombosis, albeit at a low incidence. Lowering natural anticoagulation in atherosclerosis models may help to discover factors that increase atherothrombotic complications.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Apolipoproteins E/drug effects , Atherosclerosis/metabolism , Blood Coagulation , Protein C/genetics , RNA Interference , Thrombosis/metabolism , Animals , Antithrombin III/genetics , Antithrombin III/metabolism , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/genetics , Aortic Diseases/pathology , Apolipoproteins E/genetics , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Diet, Western , Disease Models, Animal , Female , Fibrinogen/metabolism , Genetic Predisposition to Disease , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Peptide Hydrolases/blood , Phenotype , Plaque, Atherosclerotic , Protein C/metabolism , Thrombosis/blood , Thrombosis/genetics , Thrombosis/pathology
9.
J Neuroinflammation ; 14(1): 105, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28494768

ABSTRACT

BACKGROUND: The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation. METHODS: Human monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice). RESULTS: We here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models. CONCLUSIONS: Together, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , CD40 Antigens/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Monocytes/drug effects , TNF Receptor-Associated Factor 6/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Cerebellum/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Monocytes/immunology , Myelin-Oligodendrocyte Glycoprotein/toxicity , Nitric Oxide Synthase Type I/metabolism , Peptide Fragments/toxicity , Rats , Rats, Inbred Lew , Reactive Oxygen Species/metabolism , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Int J Colorectal Dis ; 32(7): 961-965, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28536898

ABSTRACT

BACKGROUND: Tissue adhesives (TA) may be useful to strengthen colorectal anastomoses, thereby preventing anastomotic leakage (AL). Previous studies have identified cyanoacrylate (CA) TAs as the most promising colonic anastomotic sealants. This study investigates the protective effects of sealing colonic anastomoses with various CAs. MATERIALS AND METHODS: Fifty-five Wistar rats underwent laparotomy and transection of the proximal colon. An anastomosis was created with 4 interrupted sutures followed by either application of Histoacryl Flexible, Omnex, Glubran 2, or no TA seal. An additional control group was included with a 12-suture anastomosis and no TA seal. After 7 days, the rats were sacrificed and scored for the presence of AL as the main outcome. Secondary outcomes were the occurrence of bowel obstruction, adhesions, and anastomotic bursting pressure. Histological evaluation was performed. RESULTS: The highest AL rate was found in the Glubran 2 group (7/11), followed by the 4-sutures group without TA (5/11), and the Omnex group (5/11). Histoacryl Flexible showed the lowest AL rate (2/11). In the control group, only one rat showed signs of AL. Histologically, the highest influx of inflammatory cells was found in the 4-suture group without TA and for Omnex and Glubran 2. Histoacryl Flexible caused more mature collagen deposition when compared to the other TA groups. CONCLUSIONS: Histoacryl Flexible showed the lowest leakage rate compared to the other TA groups and to the 4-suture control group. Glubran 2 showed the highest AL rate and a high inflammatory response. Histoacryl Flexible was associated with the presence of more mature collagen and seems to promote anastomotic healing.


Subject(s)
Anastomosis, Surgical/adverse effects , Anastomotic Leak/drug therapy , Anastomotic Leak/prevention & control , Colon/surgery , Tissue Adhesives/therapeutic use , Anastomotic Leak/etiology , Animals , Collagen/metabolism , Colon/drug effects , Cyanoacrylates/pharmacology , Cyanoacrylates/therapeutic use , Male , Pressure , Rats, Wistar , Tissue Adhesives/pharmacology , Treatment Outcome
11.
J Hepatol ; 62(2): 430-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25281859

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is characterized by hepatic lipid accumulation and inflammation. Currently, the underlying mechanisms, leading to hepatic inflammation, are still unknown. The breakdown of free cholesterol inside Kupffer cells (KCs) by the mitochondrial enzyme CYP27A1 produces 27-hydroxycholesterol (27HC). We recently demonstrated that administration of 27HC to hyperlipidemic mice reduced hepatic inflammation. In line, hematopoietic deletion of Cyp27a1 resulted in increased hepatic inflammation. In the current manuscript, the effect of hematopoietic overexpression of Cyp27a1 on the development of NASH and cholesterol trafficking was investigated. We hypothesized that Cyp27a1 overexpression in KCs will lead to reduced hepatic inflammation. METHODS: Irradiated Ldlr(-/-) mice were transplanted (tp) with bone marrow from mice overexpressing Cyp27a1 (Cyp27a1(over)) and wild type (Wt) mice and fed either chow or a high-fat, high-cholesterol (HFC) diet for 3 months. Additionally, gene expression was assessed in bone marrow-derived macrophages (BMDM) from Cyp27a1(over) and Wt mice. RESULTS: In line with our hypothesis, hepatic inflammation in HFC-fed Cyp27a1(over)-tp mice was reduced and KCs were less foamy compared to Wt-tp mice. Remarkably, these changes occurred even though plasma and liver levels of 27HC did not differ between both groups. BMDM from Cyp27a1(over) mice revealed reduced inflammatory gene expression and increased expression of cholesterol transporters compared to Wt BMDM after lipopolysaccharide (LPS) stimulation. CONCLUSIONS: Our data suggest that overexpression of Cyp27a1 in KCs reduces hepatic inflammation independently of 27HC levels in plasma and liver, further pointing towards KCs as specific target for improving the therapy of NASH.


Subject(s)
Cholestanetriol 26-Monooxygenase/genetics , DNA/genetics , Gene Expression Regulation , Hydroxycholesterols/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Animals , Bone Marrow Transplantation , Cholestanetriol 26-Monooxygenase/biosynthesis , Disease Models, Animal , Kupffer Cells/metabolism , Kupffer Cells/pathology , Lipoproteins, LDL/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
12.
FASEB J ; 28(1): 288-99, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24043262

ABSTRACT

Atherosclerosis is a lipid-driven inflammatory disease of the vessel wall, characterized by the chronic activation of macrophages. We investigated whether the helminth-derived antigens [soluble egg antigens (SEAs)] could modulate macrophage inflammatory responses and protect against atherosclerosis in mice. In bone marrow-derived macrophages, SEAs induce anti-inflammatory macrophages, typified by high levels of IL-10 and reduced secretion of proinflammatory mediators. In hyperlipidemic LDLR(-/-) mice, SEA treatment reduced plaque size by 44%, and plaques were less advanced compared with PBS-injected littermate controls. The atheroprotective effect of SEAs was found to be mainly independent of cholesterol lowering and T-lymphocyte responses but instead could be attributed to diminished myeloid cell activation. SEAs reduced circulating neutrophils and inflammatory Ly6C(high) monocytes, and macrophages showed high IL-10 production. In line with the observed systemic effects, atherosclerotic lesions of SEA-treated mice showed reduced intraplaque inflammation as inflammatory markers [TNF-α, monocyte chemotactic protein 1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and CD68], neutrophil content, and newly recruited macrophages were decreased. We show that SEA treatment protects against atherosclerosis development by dampening inflammatory responses. In the future, helminth-derived components may provide novel opportunities to treat chronic inflammatory diseases, as they diminish systemic inflammation and reduce the activation of immune cells.


Subject(s)
Antigens, Helminth/metabolism , Atherosclerosis/metabolism , Atherosclerosis/therapy , Macrophages/metabolism , Animals , Chemokine CCL2/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Receptors, LDL/genetics , Receptors, LDL/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Basic Res Cardiol ; 109(6): 447, 2014.
Article in English | MEDLINE | ID: mdl-25344084

ABSTRACT

UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.


Subject(s)
Death, Sudden, Cardiac/etiology , Ion Channels/physiology , Mitochondria, Muscle/physiology , Mitochondrial Proteins/physiology , Animals , Ion Channels/deficiency , Lipids/toxicity , Male , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Mitochondrial Proteins/deficiency , Muscle, Skeletal/ultrastructure , Oxidation-Reduction , Uncoupling Protein 3
14.
Circ Res ; 110(3): 428-38, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22194623

ABSTRACT

RATIONALE: Nuclear receptor Nur77, also known as NR4A1, TR3, or NGFI-B, is expressed in human atherosclerotic lesions in macrophages, endothelial cells, T cells and smooth muscle cells. Macrophages play a critical role in atherosclerosis and the function of Nur77 in lesion macrophages has not yet been investigated. OBJECTIVE: This study aims to delineate the function of Nur77 in macrophages and to assess the effect of bone marrow-specific deficiency of Nur77 on atherosclerosis. METHODS AND RESULTS: We investigated Nur77 in macrophage polarization using bone marrow-derived macrophages (BMM) from wild-type and Nur77-knockout (Nur77(-/-)) mice. Nur77(-/-) BMM exhibit changed expression of M2-specific markers and an inflammatory M1-phenotype with enhanced expression of interleukin-12, IFNγ, and SDF-1α and increased NO synthesis in (non)-stimulated Nur77(-/-) BMM cells. SDF-1α expression in nonstimulated Nur77(-/-) BMM is repressed by Nur77 and the chemoattractive activity of Nur77(-/-) BMM is abolished by SDF-1α inhibiting antibodies. Furthermore, Nur77(-/-) mice show enhanced thioglycollate-elicited migration of macrophages and B cells. The effect of bone marrow-specific deficiency of Nur77 on atherosclerosis was studied in low density lipoprotein receptor-deficient (Ldlr(-/-)) mice. Ldlr(-/-) mice with a Nur77(-/-)-deficient bone marrow transplant developed 2.1-fold larger atherosclerotic lesions than wild-type bone marrow-transplanted mice. These lesions contain more macrophages, T cells, smooth muscle cells and larger necrotic cores. SDF-1α expression is higher in lesions of Nur77(-/-)-transplanted mice, which may explain the observed aggravation of lesion formation. CONCLUSIONS: In conclusion, in bone marrow-derived cells the nuclear receptor Nur77 has an anti-inflammatory function, represses SDF-1α expression and inhibits atherosclerosis.


Subject(s)
Atherosclerosis/pathology , Atherosclerosis/physiopathology , Macrophages/metabolism , Macrophages/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency , Animals , Atherosclerosis/metabolism , Cell Adhesion/physiology , Cell Movement/physiology , Cells, Cultured , Chemokine CXCL12/metabolism , Cholesterol/metabolism , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Inflammation/pathology , Inflammation/physiopathology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Phenotype
15.
Circ Res ; 111(4): 415-25, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22715471

ABSTRACT

RATIONALE: Viral myocarditis results from an adverse immune response to cardiotropic viruses, which causes irreversible myocyte destruction and heart failure in previously healthy people. The involvement of microRNAs and their usefulness as therapeutic targets in this process are unknown. OBJECTIVE: To identify microRNAs involved in viral myocarditis pathogenesis and susceptibility. METHODS AND RESULTS: Cardiac microRNAs were profiled in both human myocarditis and in Coxsackievirus B3-injected mice, comparing myocarditis-susceptible with nonsusceptible mouse strains longitudinally. MicroRNA responses diverged depending on the susceptibility to myocarditis after viral infection in mice. MicroRNA-155, -146b, and -21 were consistently and strongly upregulated during acute myocarditis in both humans and susceptible mice. We found that microRNA-155 expression during myocarditis was localized primarily in infiltrating macrophages and T lymphocytes. Inhibition of microRNA-155 by a systemically delivered LNA-anti-miR attenuated cardiac infiltration by monocyte-macrophages, decreased T lymphocyte activation, and reduced myocardial damage during acute myocarditis in mice. These changes were accompanied by the derepression of the direct microRNA-155 target PU.1 in cardiac inflammatory cells. Beyond the acute phase, microRNA-155 inhibition reduced mortality and improved cardiac function during 7 weeks of follow-up. CONCLUSIONS: Our data show that cardiac microRNA dysregulation is a characteristic of both human and mouse viral myocarditis. The inflammatory microRNA-155 is upregulated during acute myocarditis, contributes to the adverse inflammatory response to viral infection of the heart, and is a potential therapeutic target for viral myocarditis.


Subject(s)
Coxsackievirus Infections/genetics , Gene Expression Profiling , MicroRNAs/metabolism , Myocarditis/genetics , Myocardium/metabolism , Animals , Coxsackievirus Infections/immunology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/physiopathology , Coxsackievirus Infections/therapy , Coxsackievirus Infections/virology , Disease Models, Animal , Enterovirus B, Human/pathogenicity , Female , Gene Expression Profiling/methods , Humans , Lymphocyte Activation , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Myocarditis/immunology , Myocarditis/pathology , Myocarditis/physiopathology , Myocarditis/therapy , Myocarditis/virology , Myocardium/immunology , Myocardium/pathology , Oligonucleotides/administration & dosage , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Time Factors
16.
Br J Nutr ; 111(1): 64-70, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-23773414

ABSTRACT

Oxysterols (oxidised cholesterol) may play a role in the pathogenesis of CVD. Similar to cholesterol, plant sterols are susceptible to oxidation. However, less is known about the potential atherogenicity of oxidised plant sterols (oxyphytosterols). In the present study, the atherogenicity of a mixture of oxyphytosterols was examined by feeding female LDL receptor-deficient (LDLR+/ -) mice for 35 weeks a control diet (atherogenic high-fat diet; n 9), an oxysterol diet (control diet+0·025 % (w/w) oxysterols; n 12) or an oxyphytosterol diet (control diet+0·025 % (w/w) oxyphytosterols; n 12). In the LDLR+/ - mice, serum levels of cholesterol, lipoprotein profiles, cholesterol exposure and inflammatory markers at the end of the experiment were comparable between the three diet groups. Nevertheless, the proportion of severe atherosclerotic lesions was significantly higher after oxysterol (41 %; P= 0·004) and oxyphytosterol (34 %; P= 0·011) diet consumption than after control diet consumption (26 %). Oxyphytosterol levels in the lesions were the highest in the oxyphytosterol group. Here, we show that not only dietary oxysterols but also dietary oxyphytosterols increase the proportion of severe atherosclerotic lesions. This suggests that plant sterols when oxidised may increase atherosclerotic lesion severity instead of lowering the size and severity of lesions when fed in their non-oxidised form. Therefore, this finding might give an indication as to where to find the answer in the current hot debate about the potential atherogenicity of plant sterols. However, to what extent these results can be extrapolated to the human situation warrants further investigation.


Subject(s)
Cholesterol, Dietary/adverse effects , Diet, High-Fat , Lipid Peroxidation , Phytosterols/adverse effects , Plaque, Atherosclerotic/etiology , Receptors, LDL/deficiency , Animals , Cholesterol, Dietary/metabolism , Female , Mice , Mice, Inbred Strains , Oxidation-Reduction , Phytosterols/metabolism , Receptors, LDL/genetics
17.
Surg Endosc ; 27(11): 4202-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23749270

ABSTRACT

BACKGROUND: Laparoscopic incisional hernia repair with intraperitoneal mesh is associated with a certain degree of adhesion formation to the mesh. This experimental study examined the efficacy of several coated meshes for adhesion reduction. METHODS: Five commercially available meshes with a layered coating were placed intraperitoneally in rats and followed up for 90 days: polypropylene and polyester meshes, both coated with absorbable collagen (Parietene Composite and Parietex Composite, respectively), and three polypropylene meshes respectively coated with absorbable omega-3 fatty acids (C-Qur Edge), absorbable cellulose (Sepramesh IP), and nonabsorbable expanded polytetrafluoroethylene (Intramesh T1). Uncoated polypropylene and collagen meshs (Parietene and Permacol, respectively) served as the control condition. Adhesions, incorporation, and tissue reaction were evaluated macro- and microscopically. Additionally, the development of the neoperitoneum was examined. RESULTS: All the coated meshes performed equally well in terms of adhesion reduction. The collagen mesh performed comparably, but the uncoated polypropylene mesh performed significantly worse. The different coatings led to very differing degrees of inflammation. Ingrowth was observed only at the place of suture but was comparable for all the meshes except C-Qur Edge, which showed the weakest incorporation. Development of a neoperitoneum on the mesh surface occurred independently of whether an absorbable or nonabsorbable coating or no coating at all was present. CONCLUSIONS: Commercially available meshes with a layered coating deliver comparable adhesion reduction. The physical presence of a layered coating between the intraperitoneal content and the abdominal wall seems to be more important than the chemical properties of the coating in adhesion formation.


Subject(s)
Coated Materials, Biocompatible , Hernia, Ventral/surgery , Materials Testing , Surgical Mesh , Tissue Adhesions/prevention & control , Abdominal Wall/surgery , Animals , Collagen , Follow-Up Studies , Herniorrhaphy , Laparoscopy , Male , Polyesters , Polypropylenes , Polytetrafluoroethylene , Prostheses and Implants , Rats , Rats, Wistar , Surgical Mesh/adverse effects , Tissue Adhesions/etiology , Tissue Adhesions/pathology
18.
Adv Biol (Weinh) ; 7(7): e2300051, 2023 07.
Article in English | MEDLINE | ID: mdl-37102630

ABSTRACT

Lowering intraocular pressure (IOP) by placement of a glaucoma shunt is an effective treatment for glaucoma. However, fibrosis of the outflow site can hamper surgical outcome. In this study, the antifibrotic effect of adding an endplate (with or without microstructured surface topographies) to a microshunt made of poly(styrene-block-isobutylene-block-styrene) is investigated. New Zealand white rabbits are implanted with a control implant (without endplate) and modified implants. Afterward, bleb morphology and IOP is recorded for 30 days. After killing of the animals, eyes are collected for histology, Addition of an endplate extended bleb survival, Topography-990 has the longest recorded bleb-survival time. Histology reveals that the addition of an endplate increases the presence of myofibroblasts, macrophages, polymorphonuclear cells, and foreign body giant cells compared to the control. However, an increased capsule thickness and inflammatory response are observed in the groups with surface topographies, The addition of an endplate results in prolonged bleb survival, demonstrating that engineering of the shape of glaucoma implants could prolong bleb functionality. Future research should further elaborate the effect of surface topographies on long-term bleb survival, since an increased presence of pro-fibrotic cells and increased capsule thickness are observed compared to the control.


Subject(s)
Glaucoma Drainage Implants , Glaucoma , Animals , Rabbits , Glaucoma Drainage Implants/adverse effects , Glaucoma/surgery , Intraocular Pressure , Eye , Fibrosis , Styrenes
19.
Macromol Biosci ; 23(10): e2300075, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37249127

ABSTRACT

Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.

20.
Front Cardiovasc Med ; 10: 1227495, 2023.
Article in English | MEDLINE | ID: mdl-37680565

ABSTRACT

Background and purpose: Carotid atherosclerotic plaques with a large lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), and a thin or ruptured fibrous cap are associated with increased stroke risk. Multi-sequence MRI can be used to quantify carotid atherosclerotic plaque composition. Yet, its clinical implementation is hampered by long scan times and image misregistration. Multi-contrast atherosclerosis characterization (MATCH) overcomes these limitations. This study aims to compare the quantification of plaque composition with MATCH and multi-sequence MRI. Methods: MATCH and multi-sequence MRI were used to image 54 carotid arteries of 27 symptomatic patients with ≥2 mm carotid plaque on a 3.0 T MRI scanner. The following sequence parameters for MATCH were used: repetition time/echo time (TR/TE), 10.1/4.35 ms; field of view, 160 mm × 160 mm × 2 mm; matrix size, 256 × 256; acquired in-plane resolution, 0.63 mm2× 0.63 mm2; number of slices, 18; and flip angles, 8°, 5°, and 10°. Multi-sequence MRI (black-blood pre- and post-contrast T1-weighted, time of flight, and magnetization prepared rapid acquisition gradient echo; acquired in-plane resolution: 0.63 mm2 × 0.63 mm2) was acquired according to consensus recommendations, and image quality was scored (5-point scale). The interobserver agreement in plaque composition quantification was assessed by the intraclass correlation coefficient (ICC). The sensitivity and specificity of MATCH in identifying plaque composition were calculated using multi-sequence MRI as a reference standard. Results: A significantly lower image quality of MATCH compared to that of multi-sequence MRI was observed (p < 0.05). The scan time for MATCH was shorter (7 vs. 40 min). Interobserver agreement in quantifying plaque composition on MATCH images was good to excellent (ICC ≥ 0.77) except for the total volume of calcifications and fibrous tissue that showed moderate agreement (ICC ≥ 0.61). The sensitivity and specificity of detecting plaque components on MATCH were ≥89% and ≥91% for IPH, ≥81% and 85% for LRNC, and ≥71% and ≥32% for calcifications, respectively. Overall, good-to-excellent agreement (ICC ≥ 0.76) of quantifying plaque components on MATCH with multi-sequence MRI as the reference standard was observed except for calcifications (ICC = 0.37-0.38) and fibrous tissue (ICC = 0.59-0.70). Discussion and conclusion: MATCH images can be used to quantify plaque components such as LRNC and IPH but not for calcifications. Although MATCH images showed a lower mean image quality score, short scan time and inherent co-registration are significant advantages.

SELECTION OF CITATIONS
SEARCH DETAIL