Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
FASEB J ; 34(4): 5851-5862, 2020 04.
Article in English | MEDLINE | ID: mdl-32141122

ABSTRACT

Retinal vascular diseases (RVD) have been identified as a major cause of blindness worldwide. These pathologies, including the wet form of age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy are currently treated by intravitreal delivery of anti-vascular endothelial growth factor (VEGF) agents. However, repeated intravitreal injections can lead to ocular complications and resistance to these treatments. Thus, there is a need to find new targeted therapies. Nucleolin regulates the endothelial cell (EC) activation and angiogenesis. In previous studies, we designed a pseudopeptide, N6L, that binds the nucleolin and blocks the tumor angiogenesis. In this study, the effect of N6L was investigated in two experimental models of retinopathies including oxygen-induced retinopathy (OIR) and choroidal neovascularization (CNV). We found that in mouse OIR, intraperitoneal injection of N6L is delivered to activated ECs and induced a 50% reduction of pathological neovascularization. The anti-angiogenic effect of N6L has been tested in CNV model in which the systemic injection of N6L induced a 33% reduction of angiogenesis. This effect is comparable to those obtained with VEGF-trap, a standard of care drug for RVD. Interestingly, with preventive and curative treatments, neoangiogenesis is inhibited by 59%. Our results have potential interest in the development of new therapies targeting other molecules than VEGF for RVD.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Choroidal Neovascularization/prevention & control , Peptides/pharmacology , Phosphoproteins/antagonists & inhibitors , RNA-Binding Proteins/antagonists & inhibitors , Retinal Diseases/prevention & control , Animals , Cell Proliferation , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Intravitreal Injections , Mice , Mice, Inbred C57BL , Oxygen/adverse effects , Phosphorylation , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Diseases/pathology , Nucleolin
2.
Arterioscler Thromb Vasc Biol ; 39(9): 1843-1858, 2019 09.
Article in English | MEDLINE | ID: mdl-31315435

ABSTRACT

Objective Weibel-Palade bodies (WPBs) are endothelial cell (EC)-specific organelles formed by vWF (von Willebrand factor) polymerization and that contain the proangiogenic factor Ang-2 (angiopoietin-2). WPB exocytosis has been shown to be implicated for vascular repair and inflammatory responses. Here, we investigate the role of WPBs during angiogenesis and vessel stabilization. Approach and Results WPB density in ECs decreased at the angiogenic front of retinal vascular network during development and neovascularization compared with stable vessels. In vitro, VEGF (vascular endothelial growth factor) induced a VEGFR-2 (vascular endothelial growth factor receptor-2)-dependent exocytosis of WPBs that contain Ang-2 and consequently the secretion of vWF and Ang-2. Blocking VEGF-dependant WPB exocytosis and Ang-2 secretion promoted pericyte migration toward ECs. Pericyte migration was inhibited by adding recombinant Ang-2 or by silencing Ang-1 (angiopoietin-1) or Tie2 (angiopoietin-1 receptor) in pericytes. Consistently, in vivo anti-VEGF treatment induced accumulation of WPBs in retinal vessels because of the inhibition of WPB exocytosis and promoted the increase of pericyte coverage of retinal vessels during angiogenesis. In tumor angiogenesis, depletion of WPBs in vWF knockout tumor-bearing mice promoted an increase of tumor angiogenesis and a decrease of pericyte coverage of tumor vessels. By another approach, normalized tumor vessels had higher WPB density. Conclusions We demonstrate that WPB exocytosis and Ang-2 secretion are regulated during angiogenesis to limit pericyte coverage of remodeling vessels by disrupting Ang-1/Tie2 autocrine signaling in pericytes.


Subject(s)
Neovascularization, Pathologic/physiopathology , Neovascularization, Physiologic/physiology , Pericytes/physiology , Weibel-Palade Bodies/physiology , Angiopoietin-2/physiology , Animals , Cells, Cultured , Endothelial Cells/physiology , Exocytosis , Humans , Mice , Mice, Inbred C57BL , Neoplasms/blood supply , Retina/physiology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/physiology
3.
Clin Cancer Res ; 27(4): 1139-1149, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33208342

ABSTRACT

PURPOSE: miRNA-155 is an oncogenic miRNA highly expressed in B-cell malignancies, particularly in the non-germinal center B-cell or activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL), where it is considered a potential diagnostic and prognostic biomarker. Thus, miR-155 inhibition represents an important therapeutic strategy for B-cell lymphomas. In this study, we tested the efficacy and pharmacodynamic activity of an oligonucleotide inhibitor of miR-155, cobomarsen, in ABC-DLBCL cell lines and in corresponding xenograft mouse models. In addition, we assessed the therapeutic efficacy and safety of cobomarsen in a patient diagnosed with aggressive ABC-DLBCL. EXPERIMENTAL DESIGN: Preclinical studies included the delivery of cobomarsen to highly miR-155-expressing ABC-DLBCL cell lines to assess any phenotypic changes, as well as intravenous injections of cobomarsen in NSG mice carrying ABC-DLBCL xenografts, to study tumor growth and pharmacodynamics of the compound over time. To begin to test its safety and therapeutic efficacy, a patient was recruited who underwent five cycles of cobomarsen treatment. RESULTS: Cobomarsen decreased cell proliferation and induced apoptosis in ABC-DLBCL cell lines. Intravenous administration of cobomarsen in a xenograft NSG mouse model of ABC-DLBCL reduced tumor volume, triggered apoptosis, and derepressed direct miR-155 target genes. Finally, the compound reduced and stabilized tumor growth without any toxic effects for the patient. CONCLUSIONS: Our findings support the potential therapeutic application of cobomarsen in ABC-DLBCL and other types of lymphoma with elevated miR-155 expression.


Subject(s)
Lymphoma, Large B-Cell, Diffuse/drug therapy , MicroRNAs/antagonists & inhibitors , Oligonucleotides, Antisense/pharmacology , Oligonucleotides/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , MicroRNAs/metabolism , Oligonucleotides/therapeutic use , Oligonucleotides, Antisense/therapeutic use , Xenograft Model Antitumor Assays
4.
Mol Ther Nucleic Acids ; 19: 267-277, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31855835

ABSTRACT

MicroRNAs (miRNAs) have increasingly been shown to be involved in human cancer, and interest has grown about the potential use of miRNAs for cancer therapy. miRNA levels are known to be altered in cancer cells, including in non-small cell lung cancer (NSCLC), a subtype of lung cancer that is the most prevalent form of cancer worldwide and that lacks effective therapies. The let-7 miRNA is involved in the regulation of oncogene expression in cells and directly represses cancer growth in the lung. let-7 is therefore a potential molecular target for tumor therapy. However, applications of RNA interference for cancer research have been limited by a lack of simple and efficient methods to deliver oligonucleotides (ONs) to cancer cells. In this study, we have used in vitro and in vivo approaches to show that HCC827 cells internalize hydrophobically modified let-7b miRNAs (hmiRNAs) added directly to the culture medium without the need for lipid formulation. We identified functional let-7b hmiRNAs targeting the HMGA2 mRNA, one of the let-7 target genes upregulated in NSCLC, and show that direct uptake in HCC827 cells induced potent and specific gene silencing in vitro and in vivo. Thus, hmiRNAs constitute a novel class of ONs that enable functional studies of genes involved in cancer biology and are potentially therapeutic molecules.

5.
Oncotarget ; 10(51): 5349-5358, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31523393

ABSTRACT

Developing new targeted therapy for pancreatic cancer is one of the major current challenges in cancer research. KRAS mutations and miRNA dysregulation (e.g. miR-21-5p oncomiR) play key roles in Pancreatic Ductal Adenocarcinoma (PDAC), leading to rapid progression of the disease. As the KRAS mutation is a main driver of PDAC, anti-KRAS strategies remain a major therapeutic approach for PDAC treatment. Previously, utilization of either siKRAS or small chemically modified single-stranded RNA molecules that specifically disable miR-21 (anti-miR-21) were effective in slowing PDAC tumor growth in various tumor models when packaged in an innovative delivery system (TPN) required for efficient drug delivery to the PDAC tumor site. Here we have tested the utility of targeting the KRAS pathway through multiple mechanisms and via dual targeting of a PDAC oncomiR and oncogene. Initially we found that miR-217, which has been shown to directly regulate KRAS expression, is downregulated in our PDAC samples, thus we tested the benefits of anti-miR-21, miR-217 mimic or siKRAS loaded into the tumor-penetrating nanoparticles (TPN) that we had previously shown to potently target the largely impenetrable PDAC tumors, and found an enhanced anti-tumoral response upon dual treatments in KRAS-mutated PDAC models.

6.
Nat Struct Mol Biol ; 26(2): 96-109, 2019 02.
Article in English | MEDLINE | ID: mdl-30664740

ABSTRACT

The noncoding RNA Xist recruits silencing factors to the inactive X chromosome (Xi) and facilitates re-organization of Xi structure. Here, we examine the mouse epigenomic landscape of Xi and assess how Xist alters chromatin accessibility. Xist deletion triggers a gain of accessibility of select chromatin regions that is regulated by BRG1, an ATPase subunit of the SWI/SNF chromatin-remodeling complex. In vitro, RNA binding inhibits nucleosome-remodeling and ATPase activities of BRG1, while in cell culture Xist directly interacts with BRG1 and expels BRG1 from the Xi. Xist ablation leads to a selective return of BRG1 in cis, starting from pre-existing BRG1 sites that are free of Xist. BRG1 re-association correlates with cohesin binding and restoration of topologically associated domains (TADs) and results in the formation of de novo Xi 'superloops'. Thus, Xist binding inhibits BRG1's nucleosome-remodeling activity and results in expulsion of the SWI/SNF complex from the Xi.


Subject(s)
Chromatin/metabolism , RNA, Long Noncoding/metabolism , X Chromosome/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Cell Line , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Epigenesis, Genetic/genetics , Epigenesis, Genetic/physiology , Female , Mice , Nucleosomes/genetics , Nucleosomes/metabolism , RNA, Long Noncoding/genetics , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , X Chromosome/genetics
7.
Expert Opin Ther Targets ; 22(11): 929-939, 2018 11.
Article in English | MEDLINE | ID: mdl-30328720

ABSTRACT

INTRODUCTION: MicroRNAs (miRNA) are a class of small non-coding RNA that play a major role in various cellular processes by negatively regulating gene expression. In the past decade, miRNA dysregulation has been reported to be closely linked to inflammatory diseases. The immune response modulates cancer initiation and progression; miRNAs including let-7 family members have been shown to act as key regulators of the immune responses in various diseases and cancers. Notably, the let-7 miRNA has been reported to be closely associated with immunity, specifically with Toll-like receptors that mediate cytokine expression during pathogen infection and with the regulation of various other immune effectors. Areas covered: In this review, the authors describe the discovery of let-7 as the starting point of the RNA revolution and highlight let-7 as an efficient tool for cancer and immune therapy. Expert opinion: let-7 miRNA has emerged as a key player in cancer therapy and immune responses and it has potential role as a new immunotherapeutic target. However, while there are challenges regarding miRNA delivery, the exciting emergence of personalized medicine for cancer and immunotherapy could be beneficial for the development of let-7 therapeutics.


Subject(s)
Immunotherapy/methods , MicroRNAs/genetics , Neoplasms/therapy , Animals , Cytokines/immunology , Disease Progression , Humans , Neoplasms/immunology , Precision Medicine/methods
8.
Clin Cancer Res ; 24(7): 1734-1747, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29330203

ABSTRACT

Purpose: Since drug responses vary between patients, it is crucial to develop pre-clinical or co-clinical strategies that forecast patient response. In this study, we tested whether RNA-based therapeutics were suitable for personalized medicine by using patient-derived-organoid (PDO) and patient-derived-xenograft (PDX) models.Experimental Design: We performed microRNA (miRNA) profiling of PDX samples to determine the status of miRNA deregulation in individual pancreatic ductal adenocarcinoma (PDAC) patients. To deliver personalized RNA-based-therapy targeting oncogenic miRNAs that form part of this common PDAC miRNA over-expression signature, we packaged antimiR oligonucleotides against one of these miRNAs in tumor-penetrating nanocomplexes (TPN) targeting cell surface proteins on PDAC tumors.Results: As a validation for our pre-clinical strategy, the therapeutic potential of one of our nano-drugs, TPN-21, was first shown to decrease tumor cell growth and survival in PDO avatars for individual patients, then in their PDX avatars.Conclusions: This general approach appears suitable for co-clinical validation of personalized RNA medicine and paves the way to prospectively identify patients with eligible miRNA profiles for personalized RNA-based therapy. Clin Cancer Res; 24(7); 1734-47. ©2018 AACR.


Subject(s)
MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Gene Expression Profiling/methods , Humans , Mice , Mice, Nude , Oncogenes/genetics , Precision Medicine/methods , Xenograft Model Antitumor Assays/methods , Pancreatic Neoplasms
9.
Oncotarget ; 8(52): 90108-90122, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29163814

ABSTRACT

In this study, a novel anticancer reagent based on polyplexes nanoparticles was developed. These nanoparticles are obtained by mixing negatively charged polyelectrolytes with the antitumour cationically-charged pseudopeptide N6L. Using two in vivo experimental tumor pancreatic models based upon PANC-1 and mPDAC cells, we found that the antitumour activity of N6L is significantly raised via its incorporation in polyplexed nanoparticles. Study of the mechanism of action using affinity isolation and si-RNA experiments indicated that N6L-polyplexes are internalized through their interaction with nucleolin. In addition, using a very aggressive model of pancreatic cancer in which gemcitabine, a standard of care for this type of cancer, has a weak effect on tumour growth, we observed that N6L-polyplexes administration has a stronger efficacy than gemcitabine. Biodistribution studies carried out in tumour-bearing mice indicated that N6L-polyplexes localises in tumour tissue, in agreement with its antitumour effect. These results support the idea that N6L nanoparticles could develop into a promising strategy for the treatment of cancer, especially hard-to-treat pancreatic cancers.

10.
Cancer Res ; 76(24): 7181-7193, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27754848

ABSTRACT

Pancreatic cancer is a highly aggressive tumor, mostly resistant to the standard treatments. Nucleolin is overexpressed in cancers and its inhibition impairs tumor growth. Herein, we showed that nucleolin was overexpressed in human specimens of pancreatic ductal adenocarcinoma (PDAC) and that the overall survival significantly increased in patients with low levels of nucleolin. The nucleolin antagonist N6L strongly impaired the growth of primary tumors and liver metastasis in an orthotopic mouse model of PDAC (mPDAC). Similar antitumor effect of N6L has been observed in a highly angiogenic mouse model of pancreatic neuroendocrine tumor RIP-Tag2. N6L significantly inhibited both human and mouse pancreatic cell proliferation and invasion. Notably, the analysis of tumor vasculature revealed a strong increase of pericyte coverage and vessel perfusion both in mPDAC and RIP-Tag2 tumors, in parallel to an inhibition of tumor hypoxia. Nucleolin inhibition directly affected endothelial cell (EC) activation and changed a proangiogenic signature. Among the vascular activators, nucleolin inhibition significantly decreased angiopoietin-2 (Ang-2) secretion and expression in ECs, in the tumor and in the plasma of mPDAC mice. As a consequence of the observed N6L-induced tumor vessel normalization, pre-treatment with N6L efficiently improved chemotherapeutic drug delivery and increased the antitumor properties of gemcitabine in PDAC mice. In conclusion, nucleolin inhibition is a new anti-pancreatic cancer therapeutic strategy that dually blocks tumor progression and normalizes tumor vasculature, improving the delivery and efficacy of chemotherapeutic drugs. Moreover, we unveiled Ang-2 as a potential target and suitable response biomarker for N6L treatment in pancreatic cancer. Cancer Res; 76(24); 7181-93. ©2016 AACR.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Neovascularization, Pathologic/pathology , Pancreatic Neoplasms/pathology , Peptides/pharmacology , Phosphoproteins/antagonists & inhibitors , RNA-Binding Proteins/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Disease Progression , Humans , Mice , Tissue Array Analysis , Nucleolin
SELECTION OF CITATIONS
SEARCH DETAIL