Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 117(37): 23165-23173, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32868448

ABSTRACT

To engineer Mo-dependent nitrogenase function in plants, expression of the structural proteins NifD and NifK will be an absolute requirement. Although mitochondria have been established as a suitable eukaryotic environment for biosynthesis of oxygen-sensitive enzymes such as NifH, expression of NifD in this organelle has proven difficult due to cryptic NifD degradation. Here, we describe a solution to this problem. Using molecular and proteomic methods, we found NifD degradation to be a consequence of mitochondrial endoprotease activity at a specific motif within NifD. Focusing on this functionally sensitive region, we designed NifD variants comprising between one and three amino acid substitutions and distinguished several that were resistant to degradation when expressed in both plant and yeast mitochondria. Nitrogenase activity assays of these resistant variants in Escherichia coli identified a subset that retained function, including a single amino acid variant (Y100Q). We found that other naturally occurring NifD proteins containing alternate amino acids at the Y100 position were also less susceptible to degradation. The Y100Q variant also enabled expression of a NifD(Y100Q)-linker-NifK translational polyprotein in plant mitochondria, confirmed by identification of the polyprotein in the soluble fraction of plant extracts. The NifD(Y100Q)-linker-NifK retained function in bacterial nitrogenase assays, demonstrating that this polyprotein permits expression of NifD and NifK in a defined stoichiometry supportive of activity. Our results exemplify how protein design can overcome impediments encountered when expressing synthetic proteins in novel environments. Specifically, these findings outline our progress toward the assembly of the catalytic unit of nitrogenase within mitochondria.


Subject(s)
Genes, Bacterial/genetics , Mitochondria/genetics , Mitochondria/physiology , Plant Proteins/genetics , Plants/genetics , Amino Acid Substitution/genetics , Escherichia coli/genetics , Nitrogen Fixation/genetics , Nitrogenase/genetics , Polyproteins/genetics , Proteomics/instrumentation
2.
Front Plant Sci ; 11: 552160, 2020.
Article in English | MEDLINE | ID: mdl-33013970

ABSTRACT

While industrial nitrogen fertilizer is intrinsic to modern agriculture, it is expensive and environmentally harmful. One approach to reduce fertilizer usage is to engineer the bacterial nitrogenase enzyme complex within plant mitochondria, a location that may support enzyme function. Our current strategy involves fusing a mitochondrial targeting peptide (MTP) to nitrogenase (Nif) proteins, enabling their import to the mitochondrial matrix. However, the process of import modifies the N-terminus of each Nif protein and may impact nitrogenase assembly and function. Here we present our workflow assessing the mitochondrial processing, solubility and relative abundance of 16 Klebsiella oxytoca Nif proteins targeted to the mitochondrial matrix in Nicotiana benthamiana leaf. We found that processing and abundance of MTP::Nif proteins varied considerably, despite using the same constitutive promoter and MTP across all Nif proteins tested. Assessment of the solubility for all MTP::Nif proteins when targeted to plant mitochondria found NifF, M, N, S, U, W, X, Y, and Z were soluble, while NifB, E, H, J, K, Q, and V were mostly insoluble. The functional consequence of the N-terminal modifications required for mitochondrial targeting of Nif proteins was tested using a bacterial nitrogenase assay. With the exception of NifM, the Nif proteins generally tolerated the N-terminal extension. Proteomic analysis of Nif proteins expressed in bacteria found that the relative abundance of NifM with an N-terminal extension was increased ~50-fold, while that of the other Nif proteins was not influenced by the N-terminal extension. Based on the solubility, processing and functional assessments, our workflow identified that K. oxytoca NifF, N, S, U, W, Y, and Z successfully met these criteria. For the remaining Nif proteins, their limitations will need to be addressed before proceeding towards assembly of a complete set of plant-ready Nif proteins for reconstituting nitrogenase in plant mitochondria.

3.
G3 (Bethesda) ; 8(5): 1721-1732, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29559536

ABSTRACT

Genomic selection (GS) has successfully been used in plant breeding to improve selection efficiency and reduce breeding time and cost. However, there has not been a study to evaluate GS prediction models that may be used for predicting cotton breeding lines across multiple environments. In this study, we evaluated the performance of Bayes Ridge Regression, BayesA, BayesB, BayesC and Reproducing Kernel Hilbert Spaces regression models. We then extended the single-site GS model to accommodate genotype × environment interaction (G×E) in order to assess the merits of multi- over single-environment models in a practical breeding and selection context in cotton, a crop for which this has not previously been evaluated. Our study was based on a population of 215 upland cotton (Gossypium hirsutum) breeding lines which were evaluated for fiber length and strength at multiple locations in Australia and genotyped with 13,330 single nucleotide polymorphic (SNP) markers. BayesB, which assumes unique variance for each marker and a proportion of markers to have large effects, while most other markers have zero effect, was the preferred model. GS accuracy for fiber length based on a single-site model varied across sites, ranging from 0.27 to 0.77 (mean = 0.38), while that of fiber strength ranged from 0.19 to 0.58 (mean = 0.35) using randomly selected sub-populations as the training population. Prediction accuracies from the M×E model were higher than those for single-site and across-site models, with an average accuracy of 0.71 and 0.59 for fiber length and strength, respectively. The use of the M×E model could therefore identify which breeding lines have effects that are stable across environments and which ones are responsible for G×E and so reduce the amount of phenotypic screening required in cotton breeding programs to identify adaptable genotypes.


Subject(s)
Cotton Fiber , Databases, Genetic , Environment , Genome, Plant , Models, Genetic , Selection, Genetic , Genetic Markers , Inheritance Patterns/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Quantitative Trait, Heritable
4.
J Exp Bot ; 54(381): 223-37, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12493850

ABSTRACT

Sucrose-phosphate synthase (SPS) from the cyanobacterium Synechocystis sp. PCC 6803 lacks all of the Ser residues known to be involved in the regulation of higher plant SPS by protein phosphorylation. The Synechocystis SPS is also not allosterically regulated by glucose 6-phosphate or orthophosphate. To investigate the effects of expressing a potentially unregulated SPS in plants, the Synechocystis sps gene was introduced into tobacco, rice and tomato under the control of constitutive promoters. The Synechocystis SPS protein was expressed at a high level in the plants, which should have been sufficient to increase overall SPS activity 2-8-fold in the leaves. However, SPS activities and carbon partitioning in leaves from transgenic and wild-type plants were not significantly different. The maximal light-saturated rates of photosynthesis in leaves from tomato plants expressing the Synechocystis SPS were the same as those from wild-type plants. Tomato plants expressing the maize SPS showed 2-3-fold increases in SPS activity, increased partitioning of photoassimilate to sucrose and up to 58% higher maximal rates of photosynthesis. To investigate the apparent inactivity of the Synechocystis SPS the enzyme was purified from transgenic tobacco and rice plants. Surprisingly, the purified enzyme was found to have full catalytic activity. It is proposed that some other protein in plant cells binds to the Synechocystis SPS resulting in inhibition of the enzyme.


Subject(s)
Cyanobacteria/enzymology , Glucosyltransferases/genetics , Nicotiana/genetics , Solanum lycopersicum/genetics , Allosteric Regulation , Cloning, Molecular , Cyanobacteria/genetics , Escherichia coli , Oryza/genetics , Plants, Genetically Modified , Transformation, Genetic
5.
Plant Physiol ; 135(3): 1753-64, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15247374

ABSTRACT

Suc-phosphate synthase (SPS) is a key regulatory enzyme in the pathway of Suc biosynthesis and has been linked to quantitative trait loci controlling plant growth and yield. In dicotyledonous plants there are three SPS gene families: A, B, and C. Here we report the finding of five families of SPS genes in wheat (Triticum aestivum) and other monocotyledonous plants from the family Poaceae (grasses). Three of these form separate subfamilies within the previously described A, B, and C gene families, but the other two form a novel and distinctive D family, which on present evidence is only found in the Poaceae. The D-type SPS proteins lack the phosphorylation sites associated with 14-3-3 protein binding and osmotic stress activation, and the linker region between the N-terminal catalytic glucosyltransferase domain and the C-terminal Suc-phosphatase-like domain is 80 to 90 amino acid residues shorter than in the A, B, or C types. The D family appears to have arisen after the divergence of mono- and dicotyledonous plants, with a later duplication event resulting in the two D-type subfamilies. Each of the SPS gene families in wheat showed different, but overlapping, spatial and temporal expression patterns, and in most organs at least two different SPS genes are expressed. Analysis of expressed sequence tags indicated similar expression patterns to wheat for each SPS gene family in barley (Hordeum vulgare) but not in more distantly related grasses. We identified an expressed sequence tag from rice (Oryza sativa) that appears to be derived from an endogenous antisense SPS gene, and this might account for the apparently low level of expression of the related OsSPS11 sense gene, adding to the already extensive list of mechanisms for regulating the activity of SPS in plants.


Subject(s)
Glucosyltransferases/genetics , Poaceae/genetics , Triticum/genetics , Amino Acid Sequence , Base Sequence , DNA Primers , Evolution, Molecular , Glucosyltransferases/chemistry , Molecular Sequence Data , Multigene Family , Oryza/classification , Oryza/enzymology , Oryza/genetics , Peptide Fragments/chemistry , Phylogeny , Plant Proteins/genetics , Poaceae/classification , Poaceae/enzymology , Triticum/classification , Triticum/enzymology , Zea mays/classification , Zea mays/enzymology , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL