Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Nature ; 583(7814): 90-95, 2020 07.
Article in English | MEDLINE | ID: mdl-32499645

ABSTRACT

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Subject(s)
Primary Immunodeficiency Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Bayes Theorem , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , RNA-Binding Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Transcription Factors/genetics
3.
N Engl J Med ; 384(21): 2002-2013, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33974366

ABSTRACT

BACKGROUND: Severe combined immunodeficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) is a rare and life-threatening primary immunodeficiency. METHODS: We treated 50 patients with ADA-SCID (30 in the United States and 20 in the United Kingdom) with an investigational gene therapy composed of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with a self-inactivating lentiviral vector encoding human ADA. Data from the two U.S. studies (in which fresh and cryopreserved formulations were used) at 24 months of follow-up were analyzed alongside data from the U.K. study (in which a fresh formulation was used) at 36 months of follow-up. RESULTS: Overall survival was 100% in all studies up to 24 and 36 months. Event-free survival (in the absence of reinitiation of enzyme-replacement therapy or rescue allogeneic hematopoietic stem-cell transplantation) was 97% (U.S. studies) and 100% (U.K. study) at 12 months; 97% and 95%, respectively, at 24 months; and 95% (U.K. study) at 36 months. Engraftment of genetically modified HSPCs persisted in 29 of 30 patients in the U.S. studies and in 19 of 20 patients in the U.K. study. Patients had sustained metabolic detoxification and normalization of ADA activity levels. Immune reconstitution was robust, with 90% of the patients in the U.S. studies and 100% of those in the U.K. study discontinuing immunoglobulin-replacement therapy by 24 months and 36 months, respectively. No evidence of monoclonal expansion, leukoproliferative complications, or emergence of replication-competent lentivirus was noted, and no events of autoimmunity or graft-versus-host disease occurred. Most adverse events were of low grade. CONCLUSIONS: Treatment of ADA-SCID with ex vivo lentiviral HSPC gene therapy resulted in high overall and event-free survival with sustained ADA expression, metabolic correction, and functional immune reconstitution. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01852071, NCT02999984, and NCT01380990.).


Subject(s)
Agammaglobulinemia/therapy , Genetic Therapy/methods , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Lentivirus/genetics , Severe Combined Immunodeficiency/therapy , Adenosine Deaminase/deficiency , Adolescent , Child , Child, Preschool , Genetic Therapy/adverse effects , Humans , Infant , Lymphocyte Count , Progression-Free Survival , Prospective Studies , Transplantation, Autologous
4.
J Clin Immunol ; 43(7): 1611-1622, 2023 10.
Article in English | MEDLINE | ID: mdl-37316763

ABSTRACT

The transcription factor STAT6 (Signal Transducer and Activator of Transcription 6) is a key regulator of Th2 (T-helper 2) mediated allergic inflammation via the IL-4 (interleukin-4) JAK (Janus kinase)/STAT signalling pathway. We identified a novel heterozygous germline mutation STAT6 c.1255G > C, p.D419H leading to overactivity of IL-4 JAK/STAT signalling pathway, in a kindred affected by early-onset atopic dermatitis, food allergy, eosinophilic asthma, anaphylaxis and follicular lymphoma. STAT6 D419H expression and functional activity were compared with wild type STAT6 in transduced HEK293T cells and to healthy control primary skin fibroblasts and peripheral blood mononuclear cells (PBMC). We observed consistently higher STAT6 levels at baseline and higher STAT6 and phosphorylated STAT6 following IL-4 stimulation in D419H cell lines and primary cells compared to wild type controls. The pSTAT6/STAT6 ratios were unchanged between D419H and control cells suggesting that elevated pSTAT6 levels resulted from higher total basal STAT6 expression. The selective JAK1/JAK2 inhibitor ruxolitinib reduced pSTAT6 levels in D419H HEK293T cells and patient PBMC. Nuclear staining demonstrated increased STAT6 in patient fibroblasts at baseline and both STAT6 and pSTAT6 after IL-4 stimulation. We also observed higher transcriptional upregulation of downstream genes (XBP1 and EPAS1) in patient PBMC. Our study confirms STAT6 gain of function (GOF) as a novel monogenetic cause of early onset atopic disease. The clinical association of lymphoma in our kindred, along with previous data linking somatic STAT6 D419H mutations to follicular lymphoma suggest that patients with STAT6 GOF disease may be at higher risk of lymphomagenesis.245 words.


Subject(s)
Interleukin-4 , Lymphoma, Follicular , Humans , Interleukin-4/genetics , Interleukin-4/metabolism , Leukocytes, Mononuclear/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Gain of Function Mutation , HEK293 Cells , Janus Kinases
5.
Cytotherapy ; 25(1): 82-93, 2023 01.
Article in English | MEDLINE | ID: mdl-36220712

ABSTRACT

BACKGROUND AIMS: Delayed immune reconstitution is a major challenge after matched unrelated donor (MUD) stem cell transplant (SCT). In this randomized phase 2 multi-center trial, Adoptive Immunotherapy with CD25/71 allodepleted donor T cells to improve immunity after unrelated donor stem cell transplant (NCT01827579), the authors tested whether allodepleted donor T cells (ADTs) can safely be used to improve immune reconstitution after alemtuzumab-based MUD SCT for hematological malignancies. METHODS: Patients received standard of care or up to three escalating doses of ADTs generated through CD25+/CD71+ immunomagnetic depletion. The primary endpoint of the study was circulating CD3+ T-cell count at 4 months post-SCT. Twenty-one patients were treated, 13 in the ADT arm and eight in the control arm. RESULTS: The authors observed a trend toward improved CD3+ T-cell count at 4 months in the ADT arm versus the control arm (230/µL versus 145/µL, P = 0.18), and three ADT patients achieved normal CD3+ T-cell count at 4 months (>700/µL). The rates of significant graft-versus-host disease (GVHD) were comparable in both cohorts, with grade ≥2 acute GVHD in seven of 13 and four of eight patients and chronic GVHD in three of 13 and three of eight patients in the ADT and control arms, respectively. CONCLUSIONS: These data suggest that adoptive transfer of ADTs is safe, but that in the MUD setting the benefit in terms of T-cell reconstitution is limited. This approach may be of more use in the context of more rigorous T-cell depletion.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , T-Lymphocytes , Unrelated Donors , Hematopoietic Stem Cell Transplantation/adverse effects , Immunotherapy
6.
J Allergy Clin Immunol ; 149(1): 369-378, 2022 01.
Article in English | MEDLINE | ID: mdl-33991581

ABSTRACT

BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities.


Subject(s)
Genetic Diseases, Inborn/classification , Immune System Diseases/classification , Rare Diseases/classification , Biological Ontologies , Humans , Phenotype
7.
J Pediatr ; 250: 67-74.e1, 2022 11.
Article in English | MEDLINE | ID: mdl-35835228

ABSTRACT

OBJECTIVES: To investigate the prevalence of hemophagocytic lymphohistiocytosis (HLH) syndrome in pediatric acute liver failure (PALF) of infancy and assess the diagnostic role of rapid immunologic tests, genotype/phenotype correlations, and clinical outcomes. STUDY DESIGN: We retrospectively analyzed 78 children with PALF aged <24 months referred over almost 2 decades. The studied patients with a phenotype of HLH syndrome had a comprehensive immunologic workup, including additional genetic analysis for primary immunologic causes. RESULTS: Thirty of the 78 children had the HLH phenotype and underwent genetic assessment, which demonstrated positive findings in 19 (63.3%), including 9 (30%) with biallelic primary HLH mutations and 10 (33.3%) with heterozygous mutations and/or polymorphisms. The most common form of primary HLH was familial hemophagocytic lymphohistiocytosis (FHL)-2, diagnosed in 6 children, 4 of whom had a c.50delT (p.Leu17ArgfsTer34) mutation in the PRF1 gene. Three patients with primary HLH received genetic diagnoses of FHL-3, Griscelli syndrome, and LRBA (lipopolysaccharide-responsive vesicle trafficking, beach- and anchor-containing) protein deficiency. Overall mortality in the series was 52.6% (10 of 19), and mortality in children with a documented biallelic pathogenic HLH mutation (ie, primary HLH) was 66.6% (6 of 9). Two children underwent liver transplantation, and 4 children underwent emergency hematopoietic stem cell transplantation; all but 1 child survived medium term. CONCLUSIONS: Primary HLH can be diagnosed retrospectively in approximately one-third of infants with indeterminate PALF (iPALF) who meet the clinical criteria for HLH, often leading to their death. The most common HLH type in iPALF is FHL-2, caused by biallelic mutations in PRF-1. The clinical relevance of observed heterozygous mutations and variants of uncertain significance requires further investigation. Prompt hematopoietic stem cell transplantation could be life-saving in infants who survive the liver injury.


Subject(s)
Liver Failure, Acute , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/epidemiology , Perforin/genetics , Retrospective Studies , Prevalence , Mutation , Liver Failure, Acute/diagnosis , Liver Failure, Acute/epidemiology , Liver Failure, Acute/etiology , Adaptor Proteins, Signal Transducing/genetics
8.
Blood ; 136(17): 1933-1945, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32599613

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a rare immunodeficiency caused by mutations in genes affecting the extrinsic apoptotic pathway (FAS, FASL, CASP10). This study evaluated the clinical manifestations, laboratory findings, and molecular genetic results of 215 patients referred as possibly having ALPS. Double-negative T-cell (DNT) percentage and in vitro apoptosis functional tests were evaluated by fluorescence-activated cell sorting; interleukin 10 (IL-10) and IL-18 and soluble FAS ligand (sFASL) were measured by enzyme-linked immunosorbent assay. Genetic analysis was performed by next-generation sequencing. Clinical background data were collected from patients' records. Patients were categorized into definite, suspected, or unlikely ALPS groups, and laboratory parameters were compared among these groups. Of 215 patients, 38 met the criteria for definite ALPS and 17 for suspected ALPS. The definite and suspected ALPS patient populations showed higher DNT percentages than unlikely ALPS and had higher rates of lymphoproliferation. Definite ALPS patients had a significantly more abnormal in vitro apoptosis function, with lower annexin, than patients with suspected ALPS (P = .002) and patients not meeting ALPS criteria (P < .001). The combination of elevated DNTs and an abnormal in vitro apoptosis functional test was the most useful in identifying all types of ALPS patients; the combination of an abnormal in vitro apoptosis functional test and elevated sFASLs was a predictive marker for ALPS-FAS group identification. Lymphoproliferation, apoptosis functional test, and DNTs are the most sensitive markers; elevated IL-10 and IL-18 are additional indicators for ALPS. The combination of elevated sFASLs and abnormal apoptosis function was the most valuable prognosticator for patients with FAS mutations.


Subject(s)
Autoimmune Lymphoproliferative Syndrome/diagnosis , Biomarkers/analysis , Molecular Diagnostic Techniques/methods , Adolescent , Adult , Aged , Apoptosis/genetics , Autoimmune Lymphoproliferative Syndrome/genetics , Autoimmune Lymphoproliferative Syndrome/metabolism , Biomarkers/metabolism , Child , Child, Preschool , Cohort Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Retrospective Studies , Sequence Analysis, DNA/methods , United Kingdom , Young Adult
10.
J Allergy Clin Immunol ; 139(2): 634-642.e5, 2017 02.
Article in English | MEDLINE | ID: mdl-27522155

ABSTRACT

BACKGROUND: Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE: We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS: Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS: Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION: For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Sequence Deletion/genetics , Severe Combined Immunodeficiency/genetics , T-Lymphocytes/physiology , Adaptor Proteins, Signal Transducing/genetics , Apoptosis , Calcium Signaling/genetics , Cell Differentiation , Consanguinity , Female , Genotype , Homozygote , Humans , Jurkat Cells , Lymphocyte Activation , Male , Membrane Proteins/genetics , Pakistan , Pedigree , Receptors, Antigen, T-Cell/genetics , Transgenes/genetics
13.
Blood ; 123(1): 126-32, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-24184682

ABSTRACT

In vivo T-cell depletion might contribute to the delayed immune reconstitution observed after unrelated umbilical cord blood transplantation (UCBT). We studied the impact of early, late, and no antithymocyte globulin (ATG) on immune reconstitution and outcome. One hundred twenty seven children receiving UCBT in London or Utrecht were divided into 3 groups: early ATG (days -9 to -5; n = 33), late ATG (days -5 to 0; n = 48), and no ATG (n = 46). The no-ATG group received mycophenolate mofetile + cyclosporin A as graft-versus-host disease (GVHD) prophylaxis, while the ATG groups received cyclosporin A + prednisone. End points studied were survival, immune recovery, infections, and GVHD. The probability of survival was similar in all groups: no ATG, 71% ± 8%; early ATG, 68% ± 9%; and late ATG, 61% ± 7%. CD3(+), CD4(+), and CD4(+)-naive T-cell counts were significantly higher (P < .001) in the no-ATG group at 1, 2, 3, 6, and 12 months post-UCBT. In the no-ATG group, significantly fewer viral reactivations (P = .021) were noted. A higher probability of severe acute GVHD (aGVHD; 31%) was found in the no-ATG group compared with 18% (P = .018) for early-ATG and 5% (P < .001) for late-ATG groups. This was not associated with more chronic GVHD (cGVHD).


Subject(s)
Antilymphocyte Serum/metabolism , Cord Blood Stem Cell Transplantation/methods , Fetal Blood/cytology , Adolescent , Antilymphocyte Serum/therapeutic use , Child , Child, Preschool , Disease-Free Survival , Female , Graft vs Host Disease/immunology , Humans , Immunosuppressive Agents/therapeutic use , Infant , Male , Probability , Remission Induction , Retrospective Studies , Risk Factors , Transplantation Conditioning/methods , Treatment Outcome , Young Adult
14.
Brain ; 138(Pt 10): 2834-46, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26122121

ABSTRACT

Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1(S616)), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1(S637)), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-DRP1(S616) levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1(S616) levels. Taken together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimer's, Huntington's and Parkinson's diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis.


Subject(s)
Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Dynamics/physiology , STAT2 Transcription Factor/deficiency , Signal Transduction/genetics , Apoptosis/genetics , Child, Preschool , Dynamins , Electroencephalography , Family Health , Female , Flow Cytometry , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Infant , Male , Microscopy, Electron , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Neuroblastoma/pathology , Phosphorylation , Protein Processing, Post-Translational , RNA, Small Nuclear/pharmacology , STAT2 Transcription Factor/genetics , Transfection
15.
Blood ; 121(8): 1345-56, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23287865

ABSTRACT

Cytotoxic lymphocytes, encompassing cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, kill pathogen-infected, neoplastic, or certain hematopoietic cells through the release of perforin-containing lytic granules. In the present study, we first performed probability-state modeling of differentiation and lytic granule markers on CD8(+) T cells to enable the comparison of bona fide CTLs with NK cells. Analysis identified CD57(bright) expression as a reliable phenotype of granule marker-containing CTLs. We then compared CD3(+)CD8(+)CD57(bright) CTLs with NK cells. Healthy adult peripheral blood CD3(+)CD8(+)CD57(bright) CTLs expressed more granzyme B but less perforin than CD3(-)CD56(dim) NK cells. On stimulation, such CTLs degranulated more readily than other T-cell subsets, but had a propensity to degranulate that was similar to NK cells. Remarkably, the CTLs produced cytokines more rapidly and with greater frequency than NK cells. In patients with biallelic mutations in UNC13D, STX11, or STXBP2 associated with familial hemophagocytic lymphohistiocytosis, CTL and NK cell degranulation were similarly impaired. Therefore, cytotoxic lymphocyte subsets have similar requirements for Munc13-4, syntaxin-11, and Munc18-2 in lytic granule exocytosis. The present results provide a detailed comparison of human CD3(+)CD8(+)CD57(bright) CTLs and NK cells and suggest that analysis of CD57(bright) CTL function may prove useful in the diagnosis of primary immunodeficiencies including familial hemophagocytic lymphohistiocytosis.


Subject(s)
CD57 Antigens/metabolism , Cytokines/metabolism , Cytoplasmic Granules/metabolism , Immunologic Deficiency Syndromes/metabolism , Killer Cells, Natural/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Adult , Biomarkers/metabolism , CD3 Complex/metabolism , CD8 Antigens/metabolism , Cell Degranulation/immunology , Cytokines/biosynthesis , Cytoplasmic Granules/immunology , Exocytosis/immunology , Humans , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/immunology , Immunophenotyping , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Membrane Proteins/metabolism , Munc18 Proteins/metabolism , Perforin , Pore Forming Cytotoxic Proteins/metabolism , Qa-SNARE Proteins/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology
16.
Haematologica ; 100(7): 978-88, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26022711

ABSTRACT

Hemophagocytic lymphohistiocytosis is a hyperinflammatory syndrome defined by clinical and laboratory criteria. Current criteria were created to identify patients with familial hemophagocytic lmyphohistiocytosis in immediate need of immunosuppressive therapy. However, these criteria also identify patients with infection-associated hemophagocytic inflammatory states lacking genetic defects typically predisposing to hemophagocytic lymphohistiocytosis. These patients include those with primary immunodeficiencies, in whom the pathogenesis of the inflammatory syndrome may be distinctive and aggressive immunosuppression is contraindicated. To better characterize hemophagocytic inflammation associated with immunodeficiencies, we combined an international survey with a literature search and identified 63 patients with primary immunodeficiencies other than cytotoxicity defects or X-linked lymphoproliferative disorders, presenting with conditions fulfilling current criteria for hemophagocytic lymphohistiocytosis. Twelve patients had severe combined immunodeficiency with <100/µL T cells, 18 had partial T-cell deficiencies; episodes of hemophagocytic lymphohistiocytosis were mostly associated with viral infections. Twenty-two patients had chronic granulomatous disease with hemophagocytic episodes mainly associated with bacterial infections. Compared to patients with cytotoxicity defects, patients with T-cell deficiencies had lower levels of soluble CD25 and higher ferritin concentrations. Other criteria for hemophagocytoc lymphohistiocytosis were not discriminative. Thus: (i) a hemophagocytic inflammatory syndrome fulfilling criteria for hemophagocytic lymphohistiocytosis can be the initial manifestation of primary immunodeficiencies; (ii) this syndrome can develop despite severe deficiency of T and NK cells, implying that the pathophysiology is distinct and not appropriately described as "lympho"-histiocytosis in these patients; and (iii) current criteria for hemophagocytoc lymphohistiocytosis are insufficient to differentiate hemophagocytic inflammatory syndromes with different pathogeneses. This is important because of implications for therapy, in particular for protocols targeting T cells.


Subject(s)
Immunologic Deficiency Syndromes/diagnosis , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphoproliferative Disorders/diagnosis , Registries , Adolescent , Adult , Bacterial Infections/complications , Bacterial Infections/drug therapy , Bacterial Infections/immunology , Child , Child, Preschool , Diagnosis, Differential , Europe , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/drug therapy , Immunologic Deficiency Syndromes/immunology , Immunologic Factors/therapeutic use , Infant , Infant, Newborn , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leishmaniasis/complications , Leishmaniasis/drug therapy , Leishmaniasis/immunology , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphoproliferative Disorders/complications , Lymphoproliferative Disorders/drug therapy , Lymphoproliferative Disorders/immunology , Male , Mycoses/complications , Mycoses/drug therapy , Mycoses/immunology , Opportunistic Infections/complications , Opportunistic Infections/drug therapy , Opportunistic Infections/immunology , Steroids/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Terminology as Topic , Virus Diseases/complications , Virus Diseases/drug therapy , Virus Diseases/immunology
17.
Blood ; 119(12): 2754-63, 2012 Mar 22.
Article in English | MEDLINE | ID: mdl-22294731

ABSTRACT

Familial hemophagocytic lymphohistiocytosis (FHL) is a life-threatening disorder of immune regulation caused by defects in lymphocyte cytotoxicity. Rapid differentiation of primary, genetic forms from secondary forms of hemophagocytic lymphohistiocytosis (HLH) is crucial for treatment decisions. We prospectively evaluated the performance of degranulation assays based on surface up-regulation of CD107a on natural killer (NK) cells and cytotoxic T lymphocytes in a cohort of 494 patients referred for evaluation for suspected HLH. Seventy-five of 77 patients (97%) with FHL3-5 and 11 of 13 patients (85%) with Griscelli syndrome type 2 or Chediak-Higashi syndrome had abnormal resting NK-cell degranulation. In contrast, NK-cell degranulation was normal in 14 of 16 patients (88%) with X-linked lymphoproliferative disease and in 8 of 14 patients (57%) with FHL2, who were identified by diminished intracellular SLAM-associated protein (SAP), X-linked inhibitor of apoptosis protein (XIAP), and perforin expression, respectively. Among 66 patients with a clinical diagnosis of secondary HLH, 13 of 59 (22%) had abnormal resting NK-cell degranulation, whereas 0 of 43 had abnormal degranulation using IL-2-activated NK cells. Active disease or immunosuppressive therapy did not impair the assay performance. Overall, resting NK-cell degranulation below 5% provided a 96% sensitivity for a genetic degranulation disorder and a specificity of 88%. Therefore, degranulation assays allow a rapid and reliable classification of patients, benefiting treatment decisions.


Subject(s)
Cell Degranulation/physiology , Immunologic Tests/methods , Killer Cells, Natural/physiology , Lymphohistiocytosis, Hemophagocytic/diagnosis , T-Lymphocytes, Cytotoxic/physiology , Humans , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/metabolism , Lysosomal-Associated Membrane Protein 1 , Prospective Studies , Sensitivity and Specificity , Time Factors
18.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38007005

ABSTRACT

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


Subject(s)
COVID-19 , Humans , Antibodies, Viral , Antigens, Viral , Immunoglobulin A , SARS-CoV-2 , Vimentin
19.
Clin Immunol ; 149(3): 464-74, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24230999

ABSTRACT

Defective V(D)J recombination and DNA double-strand break (DSB) repair severely impair the development of T-lymphocytes and B-lymphocytes. Most patients manifest a severe combined immunodeficiency during infancy. We report 2 siblings with combined immunodeficiency (CID) and immunodysregulation caused by compound heterozygous Artemis mutations, including an exon 1-3 deletion generating a null allele, and a missense change (p.T71P). Skin fibroblasts demonstrated normal DSB repair by gamma-H2AX analysis, supporting the predicted hypomorphic nature of the p.T71P allele. In addition to these two patients, 12 patients with Artemis-deficient CID were previously reported. All had significant morbidities including recurrent infections, autoimmunity, EBV-associated lymphoma, and carcinoma despite having hypomorphic mutants with residual Artemis expression, V(D)J recombination or DSB repair capacity. Nine patients underwent stem cell transplant and six survived, while four patients who did not receive transplant died. The progressive nature of immunodeficiency and genomic instability accounts for poor survival, and early HSCT should be considered.


Subject(s)
Genetic Association Studies , Mutation , Nuclear Proteins/genetics , Severe Combined Immunodeficiency/genetics , Adult , Amino Acid Sequence , Child, Preschool , DNA-Binding Proteins , Endonucleases , Female , Genetic Heterogeneity , Genomic Instability , Heterozygote , Humans , Infant , Molecular Sequence Data , Nuclear Proteins/immunology , Severe Combined Immunodeficiency/immunology , Severe Combined Immunodeficiency/pathology , Siblings , V(D)J Recombination/immunology
20.
BMC Med Genet ; 14: 42, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23557002

ABSTRACT

BACKGROUND: Hermansky-Pudlak syndrome 2 (HPS2; OMIM #608233) is a rare, autosomal recessive disorder caused by loss-of-function genetic variations affecting AP3B1, which encodes the ß3A subunit of the adaptor-related protein complex 3 (AP3). Phenotypic characteristics include reduced pigmentation, absent platelet dense granule secretion, neutropenia and reduced cytotoxic T lymphocyte (CTL) and natural killer (NK) cell function. To date HPS2 has been associated with non-synonymous, stop-gain or deletion-insertion nucleotide variations within the coding region of AP3B1. CASE PRESENTATION: We describe a consanguineous female infant with reduced pigmentation, neutropenia and recurrent infections. Platelets displayed reduced aggregation and absent ATP secretion in response to collagen and ADP, indicating a platelet dense granule defect. There was increased basal surface expression of CD107a (lysosome-associated membrane protein 1(LAMP-1)) on NK cells and CTLs from the study subject and a smaller increase in the percentage of CD107a positive cells after stimulation compared to most healthy controls. Immunoblotting of protein extracts from EBV-transformed lymphoblasts from the index case showed absent expression of full-length AP-3 ß3A subunit protein, confirming a phenotypic diagnosis of HPS2.The index case displayed a homozygous pericentric inv(5)(p15.1q14.1), which was also detected as a heterozygous defect in both parents of the index case. No loss of genetic material was demonstrated by microarray comparative genome hybridisation at 60kb resolution. Fluorescence in-situ hybridisation using the 189.6kb probe RP11-422I12, which maps to 5q14.1, demonstrated dual hybridisation to both 5q14.1 and 5p15.1 regions of the inverted Chr5. The RP11-422I12 probe maps from intron 1 to intron 16 of AP3B1, thus localising the 5q inversion breakpoint to within AP3B1. The probe RP11-211K15, which corresponds to an intergenic region on 5p also showed dual hybridisation, enabling localisation of the 5p inversion breakpoint. CONCLUSION: This case report extends the phenotypic description of the very rare disorder HPS2. Our demonstration of a homozygous Chr5 inversion predicted to disrupt AP3B1 gene provides a novel pathogenic mechanism for this disorder.


Subject(s)
Adaptor Protein Complex 3/genetics , Adaptor Protein Complex beta Subunits/genetics , Chromosomes, Human, Pair 5/genetics , Hermanski-Pudlak Syndrome/genetics , Adaptor Protein Complex 3/metabolism , Adaptor Protein Complex beta Subunits/metabolism , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Chromosome Inversion , Female , Genes , Hermanski-Pudlak Syndrome/pathology , Homozygote , Humans , Immunoblotting , In Situ Hybridization, Fluorescence , Infant , Killer Cells, Natural/metabolism , Lysosomal-Associated Membrane Protein 1/genetics , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Phenotype , Pigmentation/genetics , Protein Subunits/metabolism , T-Lymphocytes, Cytotoxic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL