Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Behav Brain Funct ; 20(1): 16, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926731

ABSTRACT

BACKGROUND: An intronic deletion within intron 2 of the DCDC2 gene encompassing the entire READ1 (hereafter, READ1d) has been associated in both children with developmental dyslexia (DD) and typical readers (TRs), with interindividual variation in reading performance and motion perception as well as with structural and functional brain alterations. Visual motion perception -- specifically processed by the magnocellular (M) stream -- has been reported to be a solid and reliable endophenotype of DD. Hence, we predicted that READ1d should affect neural activations in brain regions sensitive to M stream demands as reading proficiency changes. METHODS: We investigated neural activations during two M-eliciting fMRI visual tasks (full-field sinusoidal gratings controlled for spatial and temporal frequencies and luminance contrast, and sensitivity to motion coherence at 6%, 15% and 40% dot coherence levels) in four subject groups: children with DD with/without READ1d, and TRs with/without READ1d. RESULTS: At the Bonferroni-corrected level of significance, reading skills showed a significant effect in the right polar frontal cortex during the full-field sinusoidal gratings-M task. Regardless of the presence/absence of the READ1d, subjects with poor reading proficiency showed hyperactivation in this region of interest (ROI) compared to subjects with better reading scores. Moreover, a significant interaction was found between READ1d and reading performance in the left frontal opercular area 4 during the 15% coherent motion sensitivity task. Among subjects with poor reading performance, neural activation in this ROI during this specific task was higher for subjects without READ1d than for READ1d carriers. The difference vanished as reading skills increased. CONCLUSIONS: Our findings showed a READ1d-moderated genetic vulnerability to alterations in neural activation in the ventral attentive and salient networks during the processing of relevant stimuli in subjects with poor reading proficiency.


Subject(s)
Dyslexia , Frontal Lobe , Magnetic Resonance Imaging , Motion Perception , Parietal Lobe , Reading , Humans , Dyslexia/physiopathology , Dyslexia/genetics , Male , Child , Female , Magnetic Resonance Imaging/methods , Parietal Lobe/physiopathology , Motion Perception/physiology , Frontal Lobe/physiopathology , Frontal Lobe/diagnostic imaging , Microtubule-Associated Proteins/genetics , Brain Mapping/methods , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Photic Stimulation/methods
2.
Epilepsia Open ; 9(3): 1083-1087, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38654463

ABSTRACT

Familial epilepsy with auditory features (FEAF), previously known as autosomal-dominant lateral temporal lobe epilepsy (ADLTE) is a genetically heterogeneous syndrome, clinically characterized by focal seizures with prominent auditory symptoms. It is inherited with autosomal-dominant pattern with reduced penetrance (about 70%). Sporadic epilepsy with auditory features cases are more frequent and clinically indistinguishable from familial cases. One causal gene, MICAL-1, encodes MICAL-1, an intracellular multi-domain enzyme that is an important regulator of filamentous actin (F-actin) structures. Pathogenic variants in MICAL-1 account for approximately 7% of FEAF families. Here, we describe a de novo MICAL-1 pathogenic variant, p.Arg915Cys, in a sporadic case, an affected 21-year-old Italian man with no family history of epilepsy. Genetic testing was performed in the patient and his parents, using a next-generation sequencing panel. In cell-based assay, this variant significantly increased MICAL-1 oxidoreductase activity, which likely resulted in dysregulation of F-actin organization. This finding provides further support for a gain-of-function effect underlying MICAL-1-mediated epilepsy pathogenesis, as previously seen with other pathogenic variants. Furthermore, the case study provides evidence that de novo MICAL-1 pathogenic variants can occur in sporadic cases with epilepsy with auditory feature (EAF). PLAIN LANGUAGE SUMMARY: In this study, we report a new MICAL-1 pathogenic variant in a patient without family history for epilepsy, not inherited from his parents. MICAL-1 is a protein with enzymatic activity that reorganizes the structure of the cell. We proved the pathological effect of this variant by testing its enzymatic activity and found an increase of this activity. This result suggests that non-familial cases should be tested to find novel pathogenic variants in this gene.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Male , Young Adult , Epilepsy, Temporal Lobe/genetics , Actins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL