Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Am Chem Soc ; 141(44): 17659-17669, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31593456

ABSTRACT

Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.

2.
Nano Lett ; 18(4): 2428-2434, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29528229

ABSTRACT

The solar to electric power conversion efficiency (PCE) of perovskite solar cells (PSCs) has recently reached 22.7%, exceeding that of competing thin film photovoltaics and the market leader polycrystalline silicon. Further augmentation of the PCE toward the Shockley-Queisser limit of 33.5% warrants suppression of radiationless carrier recombination by judicious engineering of the interface between the light harvesting perovskite and the charge carrier extraction layers. Here, we introduce a mesoscopic oxide double layer as electron selective contact consisting of a scaffold of TiO2 nanoparticles covered by a thin film of SnO2, either in amorphous (a-SnO2), crystalline (c-SnO2), or nanocrystalline (quantum dot) form (SnO2-NC). We find that the band gap of a-SnO2 is larger than that of the crystalline (tetragonal) polymorph leading to a corresponding lift in its conduction band edge energy which aligns it perfectly with the conduction band edge of both the triple cation perovskite and the TiO2 scaffold. This enables very fast electron extraction from the light perovskite, suppressing the notorious hysteresis in the current-voltage ( J-V) curves and retarding nonradiative charge carrier recombination. As a result, we gain a remarkable 170 mV in open circuit photovoltage ( V oc) by replacing the crystalline SnO2 by an amorphous phase. Because of the quantum size effect, the band gap of our SnO2-NC particles is larger than that of bulk SnO2 causing their conduction band edge to shift also to a higher energy thereby increasing the V oc. However, for SnO2-NC there remains a barrier for electron injection into the TiO2 scaffold decreasing the fill factor of the device and lowering the PCE. Introducing the a-SnO2 coated mp-TiO2 scaffold as electron extraction layer not only increases the V oc and PEC of the solar cells but also render them resistant to UV light which forebodes well for outdoor deployment of these new PSC architectures.

3.
Nano Lett ; 16(11): 7155-7162, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27776210

ABSTRACT

We report on both the intrinsic and the extrinsic stability of a formamidinium lead bromide [CH(NH2)2PbBr3 = FAPbBr3] perovskite solar cell that yields a high photovoltage. The fabrication of FAPbBr3 devices, displaying an outstanding photovoltage of 1.53 V and a power conversion efficiency of over 8%, was realized by modifying the mesoporous TiO2-FAPbBr3 interface using lithium treatment. Reasons for improved photovoltaic performance were revealed by a combination of techniques, including photothermal deflection absorption spectroscopy (PDS), transient-photovoltage and charge-extraction analysis, and time-integrated and time-resolved photoluminescence. With lithium-treated TiO2 films, PDS reveals that the TiO2-FAPbBr3 interface exhibits low energetic disorder, and the emission dynamics showed that electron injection from the conduction band of FAPbBr3 into that of mesoporous TiO2 is faster than for the untreated scaffold. Moreover, compared to the device with pristine TiO2, the charge carrier recombination rate within a device based on lithium-treated TiO2 film is 1 order of magnitude lower. Importantly, the operational stability of perovskites solar cells examined at a maximum power point revealed that the FAPbBr3 material is intrinsically (under nitrogen) as well as extrinsically (in ambient conditions) stable, as the unsealed devices retained over 95% of the initial efficiency under continuous full sun illumination for 150 h in nitrogen and dry air and 80% in 60% relative humidity (T = ∼60 °C). The demonstration of high photovoltage, a record for FAPbBr3, together with robust stability renders our work of practical significance.

4.
J Am Chem Soc ; 138(34): 10742-5, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27488265

ABSTRACT

Dye-sensitized solar cells (DSSCs) have shown significant potential for indoor and building-integrated photovoltaic applications. Herein we present three new D-A-π-A organic sensitizers, XY1, XY2, and XY3, that exhibit high molar extinction coefficients and a broad absorption range. Molecular modifications of these dyes, featuring a benzothiadiazole (BTZ) auxiliary acceptor, were achieved by introducing a thiophene heterocycle as well as by shifting the position of BTZ on the conjugated bridge. The ensuing high molar absorption coefficients enabled the fabrication of highly efficient thin-film solid-state DSSCs with only 1.3 µm mesoporous TiO2 layer. XY2 with a molar extinction coefficient of 6.66 × 10(4) M(-1) cm(-1) at 578 nm led to the best photovoltaic performance of 7.51%.

5.
J Am Chem Soc ; 138(45): 15087-15096, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27749064

ABSTRACT

Redox mediators play a major role determining the photocurrent and the photovoltage in dye-sensitized solar cells (DSCs). To maintain the photocurrent, the reduction of oxidized dye by the redox mediator should be significantly faster than the electron back transfer between TiO2 and the oxidized dye. The driving force for dye regeneration with the redox mediator should be sufficiently low to provide high photovoltages. With the introduction of our new copper complexes as promising redox mediators in DSCs both criteria are satisfied to enhance power conversion efficiencies. In this study, two copper bipyridyl complexes, Cu(II/I)(dmby)2TFSI2/1 (0.97 V vs SHE, dmby = 6,6'-dimethyl-2,2'-bipyridine) and Cu(II/I)(tmby)2TFSI2/1 (0.87 V vs SHE, tmby = 4,4',6,6'-tetramethyl-2,2'-bipyridine), are presented as new redox couples for DSCs. They are compared to previously reported Cu(II/I)(dmp)2TFSI2/1 (0.93 V vs SHE, dmp = bis(2,9-dimethyl-1,10-phenanthroline). Due to the small reorganization energy between Cu(I) and Cu(II) species, these copper complexes can sufficiently regenerate the oxidized dye molecules with close to unity yield at driving force potentials as low as 0.1 V. The high photovoltages of over 1.0 V were achieved by the series of copper complex based redox mediators without compromising photocurrent densities. Despite the small driving forces for dye regeneration, fast and efficient dye regeneration (2-3 µs) was observed for both complexes. As another advantage, the electron back transfer (recombination) rates were slower with Cu(II/I)(tmby)2TFSI2/1 as evidenced by longer lifetimes. The solar-to-electrical power conversion efficiencies for [Cu(tmby)2]2+/1+, [Cu(dmby)2]2+/1+, and [Cu(dmp)2]2+/1+ based electrolytes were 10.3%, 10.0%, and 10.3%, respectively, using the organic Y123 dye under 1000 W m-2 AM1.5G illumination. The high photovoltaic performance of Cu-based redox mediators underlines the significant potential of the new redox mediators and points to a new research and development direction for DSCs.

6.
Chemistry ; 22(2): 694-703, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26628349

ABSTRACT

Four D-π-A dyes (D=donor, A=accpetor) based on a 3,4-thienothiophene π-bridge were synthesized for use in dye-sensitized solar cells (DSCs). The proaromatic building block 3,4-thienothiophene is incorporated to stabilize dye excited-state oxidation potentials. This lowering of the excited-state energy levels allows for deeper absorption into the NIR region with relatively low molecular weight dyes. The influence of proaromatic functionality is probed through a computational analysis of optimized bond lengths and nucleus independent chemical shifts (NICS) for both the ground- and excited- states. To avoid a necessary lowering of the TiO2 semiconductor conduction band (CB) to promote efficient dye-TiO2 electron injection, strong donor functionalities based on triaryl- and diarylamines are employed in the dye designs to raise both the ground- and excited-state oxidation potentials of the dyes. Solubility, aggregation, and TiO2 surface protection are addressed by examining an ethylhexyl alkyl chain in comparison to a simple ethyl chain on the 3,4-thienothiophene bridge. Power conversion efficiencies of up to 7.8 % are observed.

7.
Chemistry ; 21(51): 18654-61, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26548926

ABSTRACT

Due to the ease of tuning its redox potential, the cobalt-based redox couple has been extensively applied for highly efficient dye-sensitized solar cells (DSSCs) with extraordinarily high photovoltages. However, a cobalt electrolyte needs particular structural changes in the organic dye components to obtain such high photovoltages. To achieve high device performance, specific requirements in the molecular tailoring of organic sensitizers still need to be met. Besides the need for large electron donors, studies of the auxiliary acceptor segment of donor-acceptor-π-acceptor (D-A-π-A) organic sensitizers are still rare in molecular optimization in the context of cobalt electrolytes. In this work, two novel organic D-A-π-A-type sensitizers (IQ13 and IQ17) have been developed and exploited in cobalt- and iodine-based redox electrolyte DSSCs, specifically to provide insight into the effect of π-bridge modification in different electrolytes. The investigation has been focused on the additional electron-withdrawing acceptor capability with grafted long alkoxy chains. Optoelectronic transient measurements have indicated that IQ17 containing a pyrido[3,4-b]pyrazine moiety bearing long alkoxyphenyl chains is more suitable for application in cobalt-based DSSCs.

8.
J Med Case Rep ; 14(1): 75, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32564775

ABSTRACT

BACKGROUND: Immunoglobulin M multiple myeloma and Waldenström macroglobulinemia are two different hematological diseases with the common finding of an immunoglobulin M monoclonal gammopathy of unknown significance. However, clinical characteristics of the two entities can overlap. CASE PRESENTATION: In this report, we describe two cases of immunoglobulin M neoplasm with the same histological bone marrow presentation but with different clinical behavior, cytogenetics, and biological assessment. On the basis of comprehensive diagnostic workup, these patients were considered to have different diseases and treated accordingly with different approaches. Patient 1 (Caucasian man) presented with increased serum protein and immunoglobulin M (7665 mg/L) with an M-spike electrophoresis of 4600 mg/L. His bone marrow biopsy revealed a small-cell immunoglobulin M multiple myeloma. The result of testing for the MYD88 L265P mutation was negative, while fluorescence in situ hybridization analysis showed translocation t(11,14). A diagnosis of immunoglobulin M-κ multiple myeloma was made. Patient 1 was a candidate for bortezomib plus thalidomide and dexamethasone, followed by autologous stem cell transplant consolidation. Patient 2 (Caucasian man) showed an M-spike by protein electrophoresis (300 mg/L, 4.9%), with serum immunoglobulin M level of 327 mg/L. His bone marrow biopsy revealed immunoglobulin M-κ multiple myeloma. Computed tomography showed many enlarged lymph nodes and splenomegaly. Patient 2's clinical features were suggestive of Waldenström macroglobulinemia, in contrast to the bone marrow biopsy results. The result of testing for the MYD88 L265P mutation was positive. Patient 2 was diagnosed with Waldenström macroglobulinemia and received rituximab, cyclophosphamide, and dexamethasone. CONCLUSIONS: A correct differential diagnosis between immunoglobulin M multiple myeloma and Waldenström macroglobulinemia is a critical point in the setting of a new immunoglobulin M monoclonal gammopathy onset. These patients should undergo a complete diagnostic workup with pathological, radiological, and serological examinations to establish the diagnosis and plan the most appropriate treatment in order to improve the prognosis.


Subject(s)
Immunoglobulin M/blood , Multiple Myeloma/diagnosis , Waldenstrom Macroglobulinemia/diagnosis , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Bone Marrow/pathology , Bortezomib/administration & dosage , Cyclophosphamide/administration & dosage , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Humans , Immunosuppressive Agents/therapeutic use , Male , Mutation , Myeloid Differentiation Factor 88/genetics , Rituximab/administration & dosage , Stem Cell Transplantation , Thalidomide/administration & dosage
9.
Nat Commun ; 10(1): 3008, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31285432

ABSTRACT

The high conversion efficiency has made metal halide perovskite solar cells a real breakthrough in thin film photovoltaic technology in recent years. Here, we introduce a straightforward strategy to reduce the level of electronic defects present at the interface between the perovskite film and the hole transport layer by treating the perovskite surface with different types of ammonium salts, namely ethylammonium, imidazolium and guanidinium iodide. We use a triple cation perovskite formulation containing primarily formamidinium and small amounts of cesium and methylammonium. We find that this treatment boosts the power conversion efficiency from 20.5% for the control to 22.3%, 22.1%, and 21.0% for the devices treated with ethylammonium, imidazolium and guanidinium iodide, respectively. Best performing devices showed a loss in efficiency of only 5% under full sunlight intensity with maximum power tracking for 550 h. We apply 2D- solid-state NMR to unravel the atomic-level mechanism of this passivation effect.

10.
Diabetes ; 67(10): 2069-2083, 2018 10.
Article in English | MEDLINE | ID: mdl-29976618

ABSTRACT

In patients with diabetes, impaired activity of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13), the plasma metalloprotease that cleaves highly thrombogenic von Willebrand factor multimers, is a major risk factor of cardiovascular events. Here, using Adamts13-/- mice made diabetic by streptozotocin, we investigated the impact of the lack of ADAMTS13 on the development of diabetes-associated end-organ complications. Adamts13-/- mice experienced a shorter life span than their diabetic wild-type littermates. It was surprising that animal death was not related to the occurrence of detectable thrombotic events. The lack of ADAMTS13 drastically increased the propensity for ventricular arrhythmias during dobutamine-induced stress in diabetic mice. Cardiomyocytes of diabetic Adamts13-/- mice exhibited an aberrant distribution of the ventricular gap junction connexin 43 and increased phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII), and with the consequent CaMKII-induced disturbance in Ca2+ handling, which underlie propensity for arrhythmia. In vitro, thrombospondin 1 (TSP1) promoted, in a paracrine manner, CaMKII phosphorylation in murine HL-1 cardiomyocytes, and ADAMTS13 acted to inhibit TSP1-induced CaMKII activation. In conclusion, the deficiency of ADAMTS13 may underlie the onset of lethal arrhythmias in diabetes through increased CaMKII phosphorylation in cardiomyocytes. Our findings disclose a novel function for ADAMTS13 beyond its antithrombotic activity.


Subject(s)
ADAMTS13 Protein/metabolism , Diabetes Mellitus, Experimental/metabolism , ADAMTS13 Protein/deficiency , ADAMTS13 Protein/genetics , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Connexin 43/metabolism , Dobutamine/pharmacology , Immunohistochemistry , Male , Mice , Mice, Knockout , Phosphorylation/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Shear Strength , Thrombospondin 1/metabolism
11.
Adv Mater ; 29(40)2017 Oct.
Article in English | MEDLINE | ID: mdl-28892279

ABSTRACT

Perovskite solar cells (PSCs) based on cesium (Cs)- and rubidium (Rb)-containing perovskite films show highly reproducible performance; however, a fundamental understanding of these systems is still emerging. Herein, this study has systematically investigated the role of Cs and Rb cations in complete devices by examining the transport and recombination processes using current-voltage characteristics and impedance spectroscopy in the dark. As the credibility of these measurements depends on the performance of devices, this study has chosen two different PSCs, (MAFACs)Pb(IBr)3 (MA = CH3 NH3+ , FA = CH(NH2 )2+ ) and (MAFACsRb)Pb(IBr)3 , yielding impressive performances of 19.5% and 21.1%, respectively. From detailed studies, this study surmises that the confluence of the low trap-assisted charge-carrier recombination, low resistance offered to holes at the perovskite/2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene interface with a low series resistance (Rs ), and low capacitance leads to the realization of higher performance when an extra Rb cation is incorporated into the absorber films. This study provides a thorough understanding of the impact of inorganic cations on the properties and performance of highly efficient devices, and also highlights new strategies to fabricate efficient multiple-cation-based PSCs.

12.
Nat Commun ; 8: 15390, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28598436

ABSTRACT

Solid-state dye-sensitized solar cells currently suffer from issues such as inadequate nanopore filling, low conductivity and crystallization of hole-transport materials infiltrated in the mesoscopic TiO2 scaffolds, leading to low performances. Here we report a record 11% stable solid-state dye-sensitized solar cell under standard air mass 1.5 global using a hole-transport material composed of a blend of [Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine)2](bis(trifluoromethylsulfonyl)imide)2 and [Cu (4,4',6,6'-tetramethyl-2,2'-bipyridine)2](bis(trifluoromethylsulfonyl)imide). The amorphous Cu(II/I) conductors that conduct holes by rapid hopping infiltrated in a 6.5 µm-thick mesoscopic TiO2 scaffold are crucial for achieving such high efficiency. Using time-resolved laser photolysis, we determine the time constants for electron injection from the photoexcited sensitizers Y123 into the TiO2 and regeneration of the Y123 by Cu(I) to be 25 ps and 3.2 µs, respectively. Our work will foster the development of low-cost solid-state photovoltaic based on transition metal complexes as hole conductors.

13.
Nat Commun ; 7: 10379, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758549

ABSTRACT

Perovskite solar cells are one of the most promising photovoltaic technologies with their extraordinary progress in efficiency and the simple processes required to produce them. However, the frequent presence of a pronounced hysteresis in the current voltage characteristic of these devices arises concerns on the intrinsic stability of organo-metal halides, challenging the reliability of technology itself. Here, we show that n-doping of mesoporous TiO2 is accomplished by facile post treatment of the films with lithium salts. We demonstrate that the Li-doped TiO2 electrodes exhibit superior electronic properties, by reducing electronic trap states enabling faster electron transport. Perovskite solar cells prepared using the Li-doped films as scaffold to host the CH3NH3PbI3 light harvester produce substantially higher performances compared with undoped electrodes, improving the power conversion efficiency from 17 to over 19% with negligible hysteretic behaviour (lower than 0.3%).

14.
J Phys Chem Lett ; 7(16): 3264-9, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27472458

ABSTRACT

We report on the optimization of the interfacial properties of titania in mesoscopic CH3NH3PbI3 solar cells. Modification of the mesoporous TiO2 film by TiCl4 treatment substantially reduced the surface traps, as is evident from the sharpness of the absorption edge with a significant reduction in Urbach energy (from 320 to 140 meV) determined from photothermal deflection spectroscopy, and led to an order of magnitude enhancement in the bulk electron mobility and corresponding decrease in the transport activation energy (from 170 to 90 meV) within a device. After optimization of the photoanode-perovskite interface using various sizes of TiO2 nanoparticles, the best photovoltaic efficiency of 16.3% was achieved with the mesoporous TiO2 composed of 36 nm sized nanoparticles. The improvement in device performance can be attributed to the enhanced charge collection efficiency that is driven by improved charge transport in the mesoporous TiO2 layer. Also, the decreased recombination at the TiO2-perovskite interface and better perovskite coverage play important roles.

15.
Sci Adv ; 2(1): e1501170, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26767196

ABSTRACT

We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight.


Subject(s)
Calcium Compounds/chemistry , Cations/chemistry , Oxides/chemistry , Solar Energy , Titanium/chemistry , Amidines/chemistry , Electric Power Supplies , Electrons , Luminescence , Solutions/chemistry , Sunlight , X-Ray Diffraction/methods
16.
Nat Commun ; 6: 7326, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26065697

ABSTRACT

Artificial photosynthesis, mimicking nature in its efforts to store solar energy, has received considerable attention from the research community. Most of these attempts target the production of H2 as a fuel and our group recently demonstrated solar-to-hydrogen conversion at 12.3% efficiency. Here, in an effort to take this approach closer to real photosynthesis, which is based on the conversion of CO2, we demonstrate the efficient reduction of CO2 to carbon monoxide driven solely by simulated sunlight using water as the electron source. Employing series-connected perovskite photovoltaics and high-performance catalyst electrodes, we reach a solar-to-CO efficiency exceeding 6.5%, which represents a new benchmark in sunlight-driven CO2 conversion. Considering hydrogen as a secondary product, an efficiency exceeding 7% is observed. Furthermore, this study represents one of the first demonstrations of extended, stable operation of perovskite photovoltaics, whose large open-circuit voltage is shown to be particularly suited for this process.

17.
Nat Commun ; 6: 8834, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26538097

ABSTRACT

The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

18.
Int J Biol Markers ; 30(2): e208-16, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25588856

ABSTRACT

It is already well known that hypermethylation of the O6-methylguanine DNA methyltransferase (MGMT) gene promoter is a predictive biomarker of response to temozolomide treatment and of favorable outcomes in terms of overall survival (OS) and progression-free survival (PFS) in glioblastoma (GBM) patients. Nevertheless, MGMT methylation status has not currently been introduced into routine clinical practice, as the choice of the ideal technique and tissue sample specimen is still controversial. The aim of this study was to compare 2 analytical methods, methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ), and their use on 2 different tissue type samples, snap-frozen and formalin-fixed paraffin-embedded (FFPE), obtained from a single-center and uniformly treated cohort of 46 GBM patients. We obtained methylation data from all frozen tissues, while no results were obtained for 5 FFPE samples. The highest concordance for methylation was found on frozen tissues (88.5%, 23/26 samples), using PSQ (76.7%, 23/30 samples). Moreover, we confirmed that OS and PFS for patients carrying methylation of the MGMT promoter were longer than for patients with an unmethylated promoter. In conclusion, we considered MSP a limited technique for FFPE tissues due to the high risk of false-positive results; in contrast, our data indicated PSQ as the most powerful method to stratify methylated/unmethylated patients as it allows reaching quantitative results with high sensitivity and specificity. Furthermore, frozen tumor tissues were shown to be the best specimens for MGMT methylation analysis, due to the low DNA degradation and homogeneity in methylation throughout the tumor.


Subject(s)
Brain Neoplasms/genetics , DNA Methylation/genetics , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Glioblastoma/genetics , Tumor Suppressor Proteins/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult
20.
ChemSusChem ; 7(4): 1107-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24616370

ABSTRACT

We designed and synthesized two new zinc porphyrin dyes for dye-sensitized solar cells (DSCs). Subtle molecular structural variation in the dyes significantly influenced the performance of the DSC devices. By utilizing these dyes in combination with a cobalt-based redox electrolyte using a photoanode made of mesoporous TiO2 , we achieved a power conversion efficiency (PCE) of up to 12.0 % under AM 1.5 G (100 mW cm(-2)) simulated solar light. Moreover, we obtained a high PCE of 6.4 % for solid-state dye-sensitized solar cells by using 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene as a hole-transporting material.


Subject(s)
Coloring Agents/chemistry , Electric Power Supplies , Metalloporphyrins/chemistry , Solar Energy , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL