Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 527
Filter
Add more filters

Publication year range
1.
Mol Ther ; 32(3): 609-618, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38204164

ABSTRACT

Mucopolysaccharidosis type I (MPS I) causes systemic accumulation of glycosaminoglycans due to a genetic deficiency of α-L-iduronidase (IDUA), which results in progressive systemic symptoms affecting multiple organs, including the central nervous system (CNS). Because the blood-brain barrier (BBB) prevents enzymes from reaching the brain, enzyme replacement therapy is effective only against the somatic symptoms. Hematopoietic stem cell transplantation can address the CNS symptoms, but the risk of complications limits its applicability. We have developed a novel genetically modified protein consisting of IDUA fused with humanized anti-human transferrin receptor antibody (lepunafusp alfa; JR-171), which has been shown in nonclinical studies to be distributed to major organs, including the brain, bringing about systemic reductions in heparan sulfate (HS) and dermatan sulfate concentrations. Subsequently, a first-in-human study was conducted to evaluate the safety, pharmacokinetics, and exploratory efficacy of JR-171 in 18 patients with MPS I. No notable safety issues were observed. Plasma drug concentration increased dose dependently and reached its maximum approximately 4 h after the end of drug administration. Decreased HS in the cerebrospinal fluid suggested successful delivery of JR-171 across the BBB, while suppressed urine and serum concentrations of the substrates indicated that its somatic efficacy was comparable to that of laronidase.


Subject(s)
Mucopolysaccharidosis I , Humans , Mucopolysaccharidosis I/therapy , Mucopolysaccharidosis I/drug therapy , Iduronidase/adverse effects , Iduronidase/genetics , Iduronidase/metabolism , Brain/metabolism , Blood-Brain Barrier/metabolism , Receptors, Transferrin/genetics , Heparitin Sulfate/metabolism
2.
Am J Med Genet A ; 194(6): e63544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258498

ABSTRACT

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Subject(s)
Genetic Testing , Intensive Care Units, Neonatal , Whole Genome Sequencing , Humans , Brazil/epidemiology , Infant, Newborn , Male , Female , Genetic Testing/methods , Pilot Projects , Infant , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics
3.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924610

ABSTRACT

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

4.
J Med Genet ; 60(7): 722-731, 2023 07.
Article in English | MEDLINE | ID: mdl-36543533

ABSTRACT

BACKGROUND: Fabry disease is a rare, multisystemic disorder caused by GLA gene variants that lead to alpha galactosidase A deficiency, resulting in accumulation of glycosphingolipids and cellular dysfunction. Fabry-associated clinical events (FACEs) cause significant morbidity and mortality, yet the long-term effect of Fabry therapies on FACE incidence remains unclear. METHODS: This posthoc analysis evaluated incidence of FACEs (as a composite outcome and separately for renal, cardiac and cerebrovascular events) in 97 enzyme replacement therapy (ERT)-naïve and ERT-experienced adults with Fabry disease and amenable GLA variants who were treated with migalastat for up to 8.6 years (median: 5 years) in Phase III clinical trials of migalastat. Associations between baseline characteristics and incidence of FACEs were also evaluated. RESULTS: During long-term migalastat treatment, 17 patients (17.5%) experienced 22 FACEs and there were no deaths. The incidence rate of FACEs was 48.3 events per 1000 patient-years overall. Numerically higher incidence rates were observed in men versus women, patients aged >40 years versus younger patients, ERT-naïve versus ERT-experienced patients and men with the classic phenotype versus men and women with all other phenotypes. There was no statistically significant difference in time to first FACE when analysed by patient sex, phenotype, prior treatment status or age. Lower baseline estimated glomerular filtration rate (eGFR) was associated with an increased risk of FACEs across patient populations. CONCLUSIONS: The overall incidence of FACEs for patients during long-term treatment with migalastat compared favourably with historic reports involving ERT. Lower baseline eGFR was a significant predictor of FACEs.


Subject(s)
Fabry Disease , Humans , Female , Fabry Disease/complications , Fabry Disease/drug therapy , Fabry Disease/genetics , alpha-Galactosidase/genetics , alpha-Galactosidase/therapeutic use , Kidney , 1-Deoxynojirimycin/therapeutic use , Enzyme Replacement Therapy
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474117

ABSTRACT

Gaucher disease (GD, OMIM 230800) is one of the most common lysosomal disorders, being caused by the deficient activity of the enzyme acid ß-glucocerebrosidase (Gcase). Three clinical forms of Gaucher's disease (GD) are classified based on neurological involvement. Type 1 (GD1) is non-neuronopathic, while types 2 (GD2) and 3 (GD3) are neuronopathic forms. Gcase catalyzes the conversion of glucosylceramide (GlcCer) into ceramide and glucose. As GlcCer accumulates in lysosomal macrophages, it undergoes deacylation to become glycosylsphingosine (lyso-Gb1), which has shown to be a useful and reliable biomarker for the diagnosis and monitoring of treated and untreated patients with GD. Multiple myeloma (MM) is one of the leading causes of cancer-related death among patients with GD and monoclonal gammopathy of undetermined significance (MGUS) is a non-neoplastic condition that can be a telltale sign of a B clonal proliferation caused by the chronic activation of B cells. This study aimed to quantify Lyso-Gb1 levels in dried blood spots (DBS) and cerebrospinal fluid (CSF) as biomarkers for Gaucher disease (GD) and discuss the association of this biomarker with other clinical parameters. This is a mixed-methods study incorporating both cross-sectional and longitudinal elements within a cohort design with a convenience-sampling strategy. Data collection took place from January 2012 to March 2023. Lyso-Gb1 extraction from DBS involved the use of a methanol-acetonitrile-water mixture, followed by incubation and centrifugation. Analysis was performed using UPLC-MS/MS with MassLynx software version 4.2 and the control group for the DBS measurements included general newborns. CSF Lyso-Gb1 was extracted using ethyl acetate, analyzed by UPLC-MS/MS with a calibration curve, and expressed in pmol/L. Lysosomal activity in CSF was assessed by measuring chitotriosidase (Cht), and other lysosomal enzyme activities were assessed as previously described in the literature. Patients with metachromatic leukodystrophy (MLD) were used as controls. Thirty-two treated patients (twenty-nine GD1 and three GD3, all on ERT except for one GD type on SRT with eliglustat) and three untreated patients (one GD1, one GD2, and one GD3) were included. When analyzing only the treated GD1 group, a significant correlation was found between lyso-Gb1 and age (rho = -0.447, p = 0.001), ChT, and IgG levels (rho = 0.73, p < 0.001; and rho = 0.36, p = 0.03, respectively). Five GD1 patients (three females, mean age 40 years) also had their CSF collected and analyzed. The average measurement of lyso-Gb1 in CSF was 94 pmol/L (range: 57.1-157.9 pmol/L) versus <6.2 pmol/L in the control group (MLD). This is the first time, to the best of our knowledge, that lyso-Gb1 has been associated with IgG levels. While this finding reflects a risk for MGUS or MM and not only chronic plasma B-cell activation, it still requires further studies. Moreover, the analysis of CSF lyso-Gb1 levels in GD1 patients was demonstrated to be significantly higher than the control group. This raises the hypothesis that CSF lyso-Gb1 may serve as a valuable indicator for neurological involvement in GD, providing insights into the potential implications for neurological manifestations in GD, including GD1. The correlation between lyso-Gb1 and ChT levels in treated GD1 patients further underscores the interconnectedness of lysosomal markers and their relevance in monitoring.


Subject(s)
Gaucher Disease , Monoclonal Gammopathy of Undetermined Significance , Psychosine , Adult , Female , Humans , Infant, Newborn , Biomarkers , Brazil , Chromatography, Liquid , Cross-Sectional Studies , Gaucher Disease/diagnosis , Immunoglobulin G/blood , Psychosine/analogs & derivatives , Tandem Mass Spectrometry
6.
Genet Mol Biol ; 47(1): e20230285, 2024.
Article in English | MEDLINE | ID: mdl-38488524

ABSTRACT

Mucopolysaccharidosis type IIIB (MPS IIIB) is caused by deficiency of alpha-N-acetylglucosaminidase, leading to storage of heparan sulphate. The disease is characterized by intellectual disability and hyperactivity, among other neurological and somatic features. Here we studied retrospective data from a total of 19 MPS IIIB patients from Brazil, aiming to evaluate disease progression. Mean age at diagnosis was 7.2 years. Speech delay was one of the first symptoms to be identified, around 2-3 years of age. Behavioral alterations include hyperactivity and aggressiveness, starting around age four. By the end of the first decade, patients lost acquired abilities such as speech and ability to walk. Furthermore, as disease progresses, respiratory, cardiovascular and joint abnormalities were found in more than 50% of the patients, along with organomegaly. Most common cause of death was respiratory problems. The disease progression was characterized in multiple systems, and hopefully these data will help the design of appropriate clinical trials and clinical management guidelines.

7.
Mol Genet Metab ; 140(1-2): 107632, 2023.
Article in English | MEDLINE | ID: mdl-37407323

ABSTRACT

Measurement of enzymatic activity in newborn dried blood spots (DBS) is the preferred first-tier method in newborn screening (NBS) for mucopolysaccharidoses (MPSs). Our previous publications on glycosaminoglycan (GAG) biomarker levels in DBS for mucopolysaccharidosis type 1 (MPS-I) and MPS-II demonstrated that second-tier GAG biomarker analysis can dramatically reduce the false positive rate in NBS. In the present study, we evaluate two methods for measuring GAG biomarkers in seven MPS types and GM1 gangliosidosis. We obtained newborn DBS from patients with MPS-IIIA-D, -IVA, -VI, -VII, and GM1 gangliosidosis. These samples were analyzed via two GAG mass spectrometry methods: (1) The internal disaccharide biomarker method; (2) The endogenous non-reducing end (NRE) biomarker method. This study supports the use of second-tier GAG analysis of newborn DBS by the endogenous NRE biomarker method, as part of NBS to reduce the false positive rate.


Subject(s)
Gangliosidosis, GM1 , Mucopolysaccharidoses , Infant, Newborn , Humans , Glycosaminoglycans , Neonatal Screening/methods , Disaccharides , Tandem Mass Spectrometry/methods , Mucopolysaccharidoses/diagnosis , Biomarkers
8.
Mol Genet Metab ; 140(1-2): 107654, 2023.
Article in English | MEDLINE | ID: mdl-37507255

ABSTRACT

BACKGROUND: Lysosomal diseases (LDs) are progressive life-threatening disorders that are usually asymptomatic at birth. Specific treatments are available for several LDs, and early intervention improves patient's outcomes. Thus, these diseases benefit from newborn screening (NBS). We have performed a pilot study for six LDs in Brazil by tandem mass spectrometry. METHODS: Dried blood spot (DBS) samples of unselected newborns were analyzed by the Neo-LSD™ kit (Perkin-Elmer) by MS/MS. Samples with low enzyme activity were submitted to the evaluation of specific biomarkers by ultra-performance liquid chromatography tandem-mass spectrometry as the second-tier, and were analyzed by a next-generation sequencing (NGS) multi-gene panel as the third-tier. All tests were performed in the same DBS sample. RESULTS: In 20,066 newborns analyzed, 15 samples showed activity of one enzyme below the cutoff. Two newborns had biochemical and molecular results compatible with Fabry disease, and five newborns had biochemical results and pathogenic variants or variants of unknown significance (VUS) in GAA. CONCLUSIONS: This study indicates that the use of enzyme assay as the first-tier test gives an acceptably low number of positive results that requires second/third tier testing. The possibility to run all tests in a DBS sample makes this protocol applicable to large-scale NBS programs.


Subject(s)
Fabry Disease , Neonatal Screening , Humans , Infant, Newborn , Neonatal Screening/methods , Pilot Projects , Tandem Mass Spectrometry/methods , Brazil/epidemiology , Fabry Disease/diagnosis
9.
Arch Biochem Biophys ; 737: 109541, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36754222

ABSTRACT

Mucopolysaccharidosis type IV A (MPS IVA) is an inborn error of the metabolism (IEM) caused by a deficiency of the enzyme N-acetylgalactosamine 6-sulfate sulfatase (GALNS). Since 2014, enzyme replacement therapy (ERT) is the recommended treatment for these patients. It is known that the inflammatory response is closely related to antioxidant defenses and oxidative stress, and literature shows involvement of oxidative stress in the pathogenesis of IEM. The aim of this study is to investigate the mechanisms of oxidative/nitrative stress and inflammation in patients with MPS IVA under long-term ERT. In the present work we investigate parameters of oxidative/nitrative stress in plasma and urine of MPS IVA patients under long-term ERT and controls, such as plasmatic nitrate/nitrite levels using the LDH Method, urinary di-tyrosine levels by fluorometric method, plasmatic content of sulfhydryl groups, urinary oxidized guanine species by ELISA kit and the plasmatic total antioxidant status. We next evaluated the plasmatic pro and anti-inflammatory cytokines concentration (IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α) and the expression of factors and enzymes Nrf-2, NF-κß and HO-1, main mediators between inflammation and oxidative stress. In concern to the oxidative/nitrative stress parameters, there was no significant difference between the groups MPS IVA patients under long-term ERT and controls, showing that there is no overproducing of RNS, no protein damage, no DNA/RNA oxidative damage and no modification in the non-enzymatic antioxidant capacity of a tissue to prevent the damage associated to free radical processes in these patients. It was also verified no significant difference between the MPS IVA patients under long-term ERT and controls groups regarding the production of proinflammatory cytokines. About anti-inflammatory cytokines, IL 10 was shown to be elevated in MPS IVA patients under long-term ERT in comparison to the control group. We next evaluated the genic expression of Nrf-2, NF-κß and HO-1and there was no significant difference between the MPS IVA patients under long-term ERT and control groups. In conclusion, MPS IVA patients under long term ERT are not in an inflammatory state and there is no alteration in genic expression in the genes analyzed which are involved in oxidative stress and inflammatory pathways. It is,however, important to consider that absence of imbalance of antioxidant defenses in MPS IVA patients under long term ERT is so far preliminary it is supported by methodologies that are not highly sensitive nor very accurate. Further experiments in future using state-of-the-art methodologies will corroborate these findings. Nevertheless, our results demonstrated the protective effect of the treatment in relation to the parameters studied and the importance of starting treatment in the early stages of the disease.


Subject(s)
Chondroitinsulfatases , Mucopolysaccharidosis IV , Humans , Mucopolysaccharidosis IV/drug therapy , Mucopolysaccharidosis IV/genetics , Enzyme Replacement Therapy/methods , Antioxidants/pharmacology , Oxidative Stress , Cytokines/metabolism , Inflammation , Chondroitinsulfatases/genetics , Chondroitinsulfatases/metabolism , Chondroitinsulfatases/therapeutic use
10.
Arch Biochem Biophys ; 735: 109510, 2023 02.
Article in English | MEDLINE | ID: mdl-36608914

ABSTRACT

Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3ß,5α,6ß-triol (3ß,5α,6ß-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3ß,5α,6ß-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.


Subject(s)
Brain-Derived Neurotrophic Factor , Niemann-Pick Disease, Type C , Humans , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/pathology , Plasminogen Activator Inhibitor 1 , Platelet-Derived Growth Factor , Biomarkers , Becaplermin
11.
Am J Med Genet A ; 191(2): 408-423, 2023 02.
Article in English | MEDLINE | ID: mdl-36541412

ABSTRACT

GM1-gangliosidosis (GM1) is a rare neurodegenerative disorder leading to early mortality and causing progressive decline of physical skills and cerebral functioning. No approved treatment for GM1 exists. In this study-the first to explore priorities of parents of subjects with pediatric onset forms of GM1-we address a crucial gap by characterizing symptoms most critical to caregivers of children with GM1 to treat. Our two-part, mixed-methods approach began with focus groups, followed by interviews with a distinct set of parents. Interviews included a prioritization activity that used best-worst scaling. Quantitative data were analyzed descriptively. Qualitative data were analyzed using thematic analysis and rapid analysis process. Parents prioritized the symptoms they believed would increase their child's lifespan and improve their perceived quality of life (QoL); these symptoms focused on communicating wants/needs, preventing pain/discomfort, getting around and moving one's body, and enhancing eating/feeding. Although lifespan was highly valued, almost all parents would not desire a longer lifespan without acceptable child QoL. Parents indicated high caregiver burden and progressive reduction in QoL for children with GM1. This novel study of caregiver priorities identified important symptoms for endpoints' selection in patient-focused drug development in the context of high disease impact and unmet treatment needs.


Subject(s)
Caregivers , Gangliosidosis, GM1 , Child , Humans , Quality of Life , G(M1) Ganglioside , Parents , Rare Diseases
12.
Int J Equity Health ; 22(1): 11, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36639662

ABSTRACT

Early diagnosis of genetic rare diseases is an unmet need in Brazil, where an estimated 10-13 million people live with these conditions. Increased use of chromosome microarray assays, exome sequencing, and whole genome sequencing as first-tier testing techniques in suitable indications can shorten the diagnostic odyssey, eliminate unnecessary tests, procedures, and treatments, and lower healthcare expenditures. A selected panel of Brazilian experts in fields related to rare diseases was provided with a series of relevant questions to address before a multi-day conference. Within this conference, each narrative was discussed and edited through numerous rounds of discussion until agreement was achieved. The widespread adoption of exome sequencing and whole genome sequencing in Brazil is limited by various factors: cost and lack of funding, reimbursement, awareness and education, specialist shortages, and policy issues. To reduce the burden of rare diseases and increase early diagnosis, the Brazilian healthcare authorities/government must address the barriers to equitable access to early diagnostic methods for these conditions. Recommendations are provided, including broadening approved testing indications, increasing awareness and education efforts, increasing specialist training opportunities, and ensuring sufficient funding for genetic testing.


Subject(s)
Genetic Testing , Rare Diseases , Humans , Exome Sequencing , Brazil , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing
13.
Genet Mol Biol ; 46(3 Suppl 1): e20230126, 2023.
Article in English | MEDLINE | ID: mdl-38091267

ABSTRACT

Spinal muscular atrophy (SMA) is considered one of the most common autosomal recessive disorders, with an estimated incidence of 1 in 10,000 live births. Testing for SMA has been recommended for inclusion in neonatal screening (NBS) panels since there are several therapies available and there is evidence of greater efficacy when introduced in the pre/early symptomatic phases. In Brazil, the National Neonatal Screening Program tests for six diseases, with a new law issued in 2021 stating that it should incorporate more diseases, including SMA. In the present study, dried blood spot (DBS) samples collected by the Reference Services of Neonatal Screening of RS and SP, to perform the conventional test were also screened for SMA, using real-time PCR, with SALSA MC002 technique. A total of 40,000 samples were analyzed, enabling the identification of four positive cases of SMA, that were confirmed by MLPA. Considering our sampling, Brazil seems to have an incidence comparable to the described in other regions. This work demonstrated that the use of the MC002 technique in samples routinely collected for the conventional NBS program is suitable to screen for SMA in our conditions and can be included in the expansion of the neonatal screening programs.

14.
J Gene Med ; 24(4): e3410, 2022 04.
Article in English | MEDLINE | ID: mdl-35032067

ABSTRACT

BACKGROUND: Mucopolysaccharidosis type I (MPS I) is an inherited disease caused by deficiency of the enzyme alpha-l-iduronidase (IDUA). MPS I affects several tissues, including the brain, leading to cognitive impairment in the severe form of the disease. Currently available treatments do not reach the brain. Therefore, in this study, we performed nasal administration (NA) of liposomal complexes carrying two plasmids encoding for the CRISPR/Cas9 system and for the IDUA gene targeting the ROSA26 locus, aiming at brain delivery in MPS I mice. METHODS: Liposomes were prepared by microfluidization, and the plasmids were complexed to the formulations by adsorption. Physicochemical characterization of the formulations and complexes, in vitro permeation, and mucoadhesion in porcine nasal mucosa (PNM) were assessed. We performed NA repeatedly for 30 days in young MPS I mice, which were euthanized at 6 months of age after performing behavioral tasks, and biochemical and molecular aspects were evaluated. RESULTS: Monodisperse mucoadhesive complexes around 110 nm, which are able to efficiently permeate the PNM. In animals, the treatment led to a modest increase in IDUA activity in the lung, heart, and brain areas, with reduction of glycosaminoglycan (GAG) levels in serum, urine, tissues, and brain cortex. Furthermore, treated mice showed improvement in behavioral tests, suggesting prevention of the cognitive damage. CONCLUSION: Nonviral gene editing performed through nasal route represents a potential therapeutic alternative for the somatic and neurologic symptoms of MPS I and possibly for other neurological disorders.


Subject(s)
Mucopolysaccharidosis I , Animals , Brain/metabolism , CRISPR-Cas Systems/genetics , Gene Editing , Iduronidase/genetics , Iduronidase/metabolism , Mice , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Plasmids
15.
Genet Med ; 24(7): 1425-1436, 2022 07.
Article in English | MEDLINE | ID: mdl-35471153

ABSTRACT

PURPOSE: This trial aimed to assess the efficacy and safety of olipudase alfa enzyme replacement therapy for non-central nervous system manifestations of acid sphingomyelinase deficiency (ASMD) in adults. METHODS: A phase 2/3, 52 week, international, double-blind, placebo-controlled trial (ASCEND; NCT02004691/EudraCT 2015-000371-26) enrolled 36 adults with ASMD randomized 1:1 to receive olipudase alfa or placebo intravenously every 2 weeks with intrapatient dose escalation to 3 mg/kg. Primary efficacy endpoints were percent change from baseline to week 52 in percent predicted diffusing capacity of the lung for carbon monoxide and spleen volume (combined with splenomegaly-related score in the United States). Other outcomes included liver volume/function/sphingomyelin content, pulmonary imaging/function, platelet levels, lipid profiles, and pharmacodynamics. RESULTS: Least square mean percent change from baseline to week 52 favored olipudase alfa over placebo for percent predicted diffusing capacity of the lung for carbon monoxide (22% vs 3.0% increases, P = .0004), spleen volume (39% decrease vs 0.5% increase, P < .0001), and liver volume (28% vs 1.5% decreases, P < .0001). Splenomegaly-related score decreased in both groups (P = .64). Other clinical outcomes improved in the olipudase alfa group compared with the placebo group. There were no treatment-related serious adverse events or adverse event-related discontinuations. Most adverse events were mild. CONCLUSION: Olipudase alfa was well tolerated and associated with significant and comprehensive improvements in disease pathology and clinically relevant endpoints compared with placebo in adults with ASMD.


Subject(s)
Niemann-Pick Disease, Type A , Adult , Carbon Monoxide/therapeutic use , Double-Blind Method , Enzyme Replacement Therapy/methods , Humans , Recombinant Proteins , Sphingomyelin Phosphodiesterase , Splenomegaly
16.
Mol Genet Metab ; 135(2): 133-142, 2022 02.
Article in English | MEDLINE | ID: mdl-34991944

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS IIIA, also known as Sanfilippo syndrome) is a rare genetic lysosomal storage disease characterized by early and progressive neurodegeneration resulting in a rapid decline in cognitive function affecting speech and language, adaptive behavior, and motor skills. We carried out a prospective observational study to assess the natural history of patients with MPS IIIA, using both standardized tests and patient-centric measures to determine the course of disease progression over a 2-year period. A cohort of 23 patients (7 girls, 16 boys; mean age 28-105 months at baseline) with a confirmed diagnosis of MPS IIIA were assessed and followed up at intervals of 3-6 months; cognitive function was measured using Bayley Scales of Infant and Toddler Development 3rd edition (BSID-III) to derive cognitive development quotients (DQ). Daily living, speech/language development and motor skills were measured using the Vineland Adaptive Behavior Scale (VABS-II). Sleep-wake patterns, behavior and quality-of-life questionnaires were also reported at each visit using parent/caregiver reported outcome tools. All patients had early onset severe MPS IIIA, were diagnosed before 74 months of age, and had cognitive scores below normal developmental levels at baseline. Patients less than 40 months of age at baseline were more likely to continue developing new skills over the first 6-12 months of follow-up. There was a high variability in cognitive developmental age (DA) in patients between 40 and 70 months of age; two-thirds of these patients already had profound cognitive decline, with a DA ≤10 months. The highest cognitive DA achieved in the full study cohort was 34 months. Post hoc, patients were divided into two groups based on baseline cognitive DQ (DQ ≥50 or <50). Cognitive DQ decreased linearly over time, with a decrease from baseline of 30.1 and 9.0 points in patients with cognitive DQ ≥50 at baseline and cognitive DQ <50 at baseline, respectively. Over the 2-year study, VABS-II language scores declined progressively. Motor skills, including walking, declined over time, although significantly later than cognitive decline. No clear pattern of sleep disturbance was observed, but night waking was common in younger patients. Pain scores, as measured on the quality-of-life questionnaire, increased over the study period. The findings of this study strengthen the natural history data on cognitive decline in MPS IIIA and importantly provide additional data on endpoints, validated by the patient community as important to treat, that may form the basis of a multidomain endpoint capturing the disease complexity.


Subject(s)
Cognitive Dysfunction , Mucopolysaccharidosis III , Child , Child, Preschool , Cognition , Disease Progression , Female , Humans , Infant , Male , Mucopolysaccharidosis III/diagnosis , Prospective Studies
17.
J Pediatr ; 249: 50-58.e2, 2022 10.
Article in English | MEDLINE | ID: mdl-35709957

ABSTRACT

OBJECTIVE: To characterize the longitudinal natural history of disease progression in pediatric subjects affected with mucopolysaccharidosis (MPS) IIIB. STUDY DESIGN: Sixty-five children with a confirmed diagnosis of MPS IIIB were enrolled into 1 of 2 natural history studies and followed for up to 4 years. Cognitive and adaptive behavior functions were analyzed in all subjects, and volumetric magnetic resonance imaging analysis of liver, spleen, and brain, as well as levels of heparan sulfate (HS) and heparan sulfate nonreducing ends (HS-NRE), were measured in a subset of subjects. RESULTS: The majority of subjects with MPS IIIB achieved an apex on both cognition and adaptive behavior age equivalent scales between age 3 and 6 years. Development quotients for both cognition and adaptive behavior follow a linear trajectory by which subjects reach a nadir with a score <25 for an age equivalent of 24 months by age 8 years on average and by 13.5 years at the latest. All tested subjects (n = 22) had HS and HS-NRE levels above the normal range in cerebrospinal fluid and plasma, along with signs of hepatomegaly. Subjects lost an average of 26 mL of brain volume (-2.7%) over 48 weeks, owing entirely to a loss of cortical gray matter (32 mL; -6.5%). CONCLUSIONS: MPS IIIB exists along a continuum based on cognitive decline and cortical gray matter atrophy. Although a few individuals with MPS IIIB have an attenuated phenotype, the majority follow predicted trajectories for both cognition and adaptive behavior. TRIAL REGISTRATION: ClinicalTrials.gov identifiers NCT02493998, NCT03227042, and NCT02754076.


Subject(s)
Mucopolysaccharidosis III , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Gray Matter , Heparitin Sulfate , Humans , Magnetic Resonance Imaging , Mucopolysaccharidosis III/diagnosis
18.
Am J Med Genet A ; 188(3): 760-767, 2022 03.
Article in English | MEDLINE | ID: mdl-34806811

ABSTRACT

Mucopolysaccharidosis type IIIB is a rare autosomal recessive disorder characterized by deficiency of the enzyme N-acetyl-alpha-d-glucosaminidase (NAGLU), caused by biallelic pathogenic variants in the NAGLU gene, which leads to storage of heparan sulfate and a series of clinical consequences which hallmark is neurodegeneration. In this study clinical, epidemiological, and biochemical data were obtained from MPS IIIB patients diagnosed from 2004-2019 by the MPS Brazil Network ("Rede MPS Brasil"), which was created with the goal to provide an easily accessible and comprehensive investigation of all MPS types. One hundred and ten MPS IIIB patients were diagnosed during this period. Mean age at diagnosis was 10.9 years. Patients were from all over Brazil, with a few from abroad, with a possible cluster of MPS IIIB identified in Ecuador. All patients had increased urinary levels of glycosaminoglycans and low NAGLU activity in blood. Main clinical symptoms reported at diagnosis were coarse facies and neurocognitive regression. The most common variant was p.Leu496Pro (30% of alleles). MPS IIIB seems to be relatively frequent in Brazil, but patients are diagnosed later than in other countries, and reasons for that probably include the limited awareness about the disease by health professionals and the difficulties to access diagnostic tests, factors that the MPS Brazil Network is trying to mitigate.


Subject(s)
Mucopolysaccharidosis III , Alleles , Brazil/epidemiology , Child , Heparitin Sulfate , Humans , Mucopolysaccharidosis III/diagnosis , Mucopolysaccharidosis III/epidemiology , Mucopolysaccharidosis III/genetics
19.
Mol Ther ; 29(7): 2378-2386, 2021 07 07.
Article in English | MEDLINE | ID: mdl-33781915

ABSTRACT

In Hunter syndrome (mucopolysaccharidosis II [MPS-II]), systemic accumulation of glycosaminoglycans (GAGs) due to a deficiency of iduronate-2-sulfatase (IDS), caused by mutations in the IDS gene, leads to multiple somatic manifestations and in patients with the severe (neuronopathic) phenotype, also to central nervous system (CNS) involvement. These symptoms cannot be effectively treated with current enzyme-replacement therapies, as they are unable to cross the blood-brain barrier (BBB). Pabinafusp alfa, a novel IDS fused with an anti-human transferrin receptor antibody, was shown to penetrate the BBB and to address neurodegeneration in preclinical studies. Subsequent phase 1/2 and 2/3 clinical studies in Japan have shown marked reduction of GAG accumulation in the cerebrospinal fluid (CSF), along with favorable clinical responses. A 26-week, open-label, randomized, parallel-group phase 2 study was conducted in Brazil to further evaluate the safety and efficacy of intravenously administered pabinafusp alfa at 1.0, 2.0, and 4.0 mg/kg/week in MPS-II patients. The safety profiles in the three dosage groups were similar. Neurodevelopmental evaluation suggested positive neurocognitive signals despite a relatively short study period. The 2.0-mg/kg group, which demonstrated marked reductions in substrate concentrations in the CSF, serum, and urine, was considered to provide the best combination regarding safety and efficacy signals.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Enzyme Replacement Therapy/methods , Iduronate Sulfatase/administration & dosage , Mucopolysaccharidosis II/drug therapy , Receptors, Transferrin/antagonists & inhibitors , Recombinant Fusion Proteins/administration & dosage , Adolescent , Adult , Brazil/epidemiology , Child , Drug Therapy, Combination , Female , Humans , Male , Mucopolysaccharidosis II/epidemiology , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/pathology , Receptors, Transferrin/immunology , Treatment Outcome , Young Adult
20.
Hum Mutat ; 42(11): 1384-1398, 2021 11.
Article in English | MEDLINE | ID: mdl-34387910

ABSTRACT

Mucopolysaccharidosis IVA (MPS IVA, Morquio A syndrome) is a rare autosomal recessive lysosomal storage disorder caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. We collected, analyzed, and uniformly summarized all published GALNS gene variants, thus updating the previous mutation review (published in 2014). In addition, new variants were communicated by seven reference laboratories in Europe, the Middle East, Latin America, Asia, and the United States. All data were analyzed to determine common alleles, geographic distribution, level of homozygosity, and genotype-phenotype correlation. Moreover, variants were classified according to their pathogenicity as suggested by ACMG. Including those previously published, we assembled 446 unique variants, among which 68 were novel, from 1190 subjects (including newborn screening positive subjects). Variants' distribution was missense (65.0%), followed by nonsense (8.1%), splicing (7.2%), small frameshift deletions(del)/insertions(ins) (7.0%), intronic (4.0%), and large del/ins and complex rearrangements (3.8%). Half (50.4%) of the subjects were homozygous, 37.1% were compound heterozygous, and 10.7% had only one variant detected. The novel variants underwent in silico analysis to evaluate their pathogenicity. All variants were submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) to make them publicly available. Mutation updates are essential for the correct molecular diagnoses, genetic counseling, prenatal and preimplantation diagnosis, and disease management.


Subject(s)
Chondroitinsulfatases/genetics , Mucopolysaccharidosis IV/genetics , Mutation , Genetic Association Studies , Humans
SELECTION OF CITATIONS
SEARCH DETAIL