Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: mdl-33589928

ABSTRACT

This article describes some use case studies and self-assessments of FAIR status of de.NBI services to illustrate the challenges and requirements for the definition of the needs of adhering to the FAIR (findable, accessible, interoperable and reusable) data principles in a large distributed bioinformatics infrastructure. We address the challenge of heterogeneity of wet lab technologies, data, metadata, software, computational workflows and the levels of implementation and monitoring of FAIR principles within the different bioinformatics sub-disciplines joint in de.NBI. On the one hand, this broad service landscape and the excellent network of experts are a strong basis for the development of useful research data management plans. On the other hand, the large number of tools and techniques maintained by distributed teams renders FAIR compliance challenging.


Subject(s)
Data Management/methods , Metadata , Neural Networks, Computer , Proteomics/methods , Software , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , International Cooperation , Phenotype , Plants/genetics , Proteome , Self-Assessment , Workflow
2.
Environ Microbiol ; 23(3): 1379-1396, 2021 03.
Article in English | MEDLINE | ID: mdl-33331109

ABSTRACT

Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.


Subject(s)
Cyanobacteria , Phytoplankton , Ponds , Animals , Cyanobacteria/genetics , DNA, Bacterial/genetics , Ducks , Eutrophication , Humans , Lymnaea , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Brief Bioinform ; 20(4): 1215-1221, 2019 07 19.
Article in English | MEDLINE | ID: mdl-29092005

ABSTRACT

Sustainable noncommercial bioinformatics infrastructures are a prerequisite to use and take advantage of the potential of big data analysis for research and economy. Consequently, funders, universities and institutes as well as users ask for a transparent value model for the tools and services offered. In this article, a generally applicable lightweight method is described by which bioinformatics infrastructure projects can estimate the value of tools and services offered without determining exactly the total costs of ownership. Five representative scenarios for value estimation from a rough estimation to a detailed breakdown of costs are presented. To account for the diversity in bioinformatics applications and services, the notion of service-specific 'service provision units' is introduced together with the factors influencing them and the main underlying assumptions for these 'value influencing factors'. Special attention is given on how to handle personnel costs and indirect costs such as electricity. Four examples are presented for the calculation of the value of tools and services provided by the German Network for Bioinformatics Infrastructure (de.NBI): one for tool usage, one for (Web-based) database analyses, one for consulting services and one for bioinformatics training events. Finally, from the discussed values, the costs of direct funding and the costs of payment of services by funded projects are calculated and compared.


Subject(s)
Computational Biology/economics , Computational Biology/methods , Software/economics , Big Data/economics , Computational Biology/education , Consultants , Costs and Cost Analysis , Facility Design and Construction/economics , Humans , Information Services/economics , Models, Economic , Web Browser/economics
4.
Syst Biol ; 69(6): 1231-1253, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32298457

ABSTRACT

Natural history collections are leading successful large-scale projects of specimen digitization (images, metadata, DNA barcodes), thereby transforming taxonomy into a big data science. Yet, little effort has been directed towards safeguarding and subsequently mobilizing the considerable amount of original data generated during the process of naming 15,000-20,000 species every year. From the perspective of alpha-taxonomists, we provide a review of the properties and diversity of taxonomic data, assess their volume and use, and establish criteria for optimizing data repositories. We surveyed 4113 alpha-taxonomic studies in representative journals for 2002, 2010, and 2018, and found an increasing yet comparatively limited use of molecular data in species diagnosis and description. In 2018, of the 2661 papers published in specialized taxonomic journals, molecular data were widely used in mycology (94%), regularly in vertebrates (53%), but rarely in botany (15%) and entomology (10%). Images play an important role in taxonomic research on all taxa, with photographs used in >80% and drawings in 58% of the surveyed papers. The use of omics (high-throughput) approaches or 3D documentation is still rare. Improved archiving strategies for metabarcoding consensus reads, genome and transcriptome assemblies, and chemical and metabolomic data could help to mobilize the wealth of high-throughput data for alpha-taxonomy. Because long-term-ideally perpetual-data storage is of particular importance for taxonomy, energy footprint reduction via less storage-demanding formats is a priority if their information content suffices for the purpose of taxonomic studies. Whereas taxonomic assignments are quasifacts for most biological disciplines, they remain hypotheses pertaining to evolutionary relatedness of individuals for alpha-taxonomy. For this reason, an improved reuse of taxonomic data, including machine-learning-based species identification and delimitation pipelines, requires a cyberspecimen approach-linking data via unique specimen identifiers, and thereby making them findable, accessible, interoperable, and reusable for taxonomic research. This poses both qualitative challenges to adapt the existing infrastructure of data centers to a specimen-centered concept and quantitative challenges to host and connect an estimated $ \le $2 million images produced per year by alpha-taxonomic studies, plus many millions of images from digitization campaigns. Of the 30,000-40,000 taxonomists globally, many are thought to be nonprofessionals, and capturing the data for online storage and reuse therefore requires low-complexity submission workflows and cost-free repository use. Expert taxonomists are the main stakeholders able to identify and formalize the needs of the discipline; their expertise is needed to implement the envisioned virtual collections of cyberspecimens. [Big data; cyberspecimen; new species; omics; repositories; specimen identifier; taxonomy; taxonomic data.].


Subject(s)
Classification , Databases, Factual/standards , Animals , Databases, Factual/trends
5.
Nucleic Acids Res ; 47(D1): D259-D264, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30371820

ABSTRACT

UNITE (https://unite.ut.ee/) is a web-based database and sequence management environment for the molecular identification of fungi. It targets the formal fungal barcode-the nuclear ribosomal internal transcribed spacer (ITS) region-and offers all ∼1 000 000 public fungal ITS sequences for reference. These are clustered into ∼459 000 species hypotheses and assigned digital object identifiers (DOIs) to promote unambiguous reference across studies. In-house and web-based third-party sequence curation and annotation have resulted in more than 275 000 improvements to the data over the past 15 years. UNITE serves as a data provider for a range of metabarcoding software pipelines and regularly exchanges data with all major fungal sequence databases and other community resources. Recent improvements include redesigned handling of unclassifiable species hypotheses, integration with the taxonomic backbone of the Global Biodiversity Information Facility, and support for an unlimited number of parallel taxonomic classification systems.


Subject(s)
Computational Biology/methods , DNA Barcoding, Taxonomic/methods , Databases, Nucleic Acid , Fungi/classification , Fungi/genetics , Genome, Fungal , Genomics , Genomics/methods , Software , Web Browser
6.
BMC Bioinformatics ; 20(1): 453, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488068

ABSTRACT

BACKGROUND: Metagenomics caused a quantum leap in microbial ecology. However, the inherent size and complexity of metagenomic data limit its interpretation. The quantification of metagenomic traits in metagenomic analysis workflows has the potential to improve the exploitation of metagenomic data. Metagenomic traits are organisms' characteristics linked to their performance. They are measured at the genomic level taking a random sample of individuals in a community. As such, these traits provide valuable information to uncover microorganisms' ecological patterns. The Average Genome Size (AGS) and the 16S rRNA gene Average Copy Number (ACN) are two highly informative metagenomic traits that reflect microorganisms' ecological strategies as well as the environmental conditions they inhabit. RESULTS: Here, we present the ags.sh and acn.sh tools, which analytically derive the AGS and ACN metagenomic traits. These tools represent an advance on previous approaches to compute the AGS and ACN traits. Benchmarking shows that ags.sh is up to 11 times faster than state-of-the-art tools dedicated to the estimation AGS. Both ags.sh and acn.sh show comparable or higher accuracy than existing tools used to estimate these traits. To exemplify the applicability of both tools, we analyzed the 139 prokaryotic metagenomes of TARA Oceans and revealed the ecological strategies associated with different water layers. CONCLUSION: We took advantage of recent advances in gene annotation to develop the ags.sh and acn.sh tools to combine easy tool usage with fast and accurate performance. Our tools compute the AGS and ACN metagenomic traits on unassembled metagenomes and allow researchers to improve their metagenomic data analysis to gain deeper insights into microorganisms' ecology. The ags.sh and acn.sh tools are publicly available using Docker container technology at https://github.com/pereiramemo/AGS-and-ACN-tools .


Subject(s)
Gene Dosage , Genome Size , Metagenome/genetics , Metagenomics/methods , RNA, Ribosomal, 16S/genetics , Benchmarking , DNA Copy Number Variations , Databases, Genetic , Oceans and Seas , Time Factors
7.
Appl Environ Microbiol ; 85(14)2019 07 15.
Article in English | MEDLINE | ID: mdl-31076426

ABSTRACT

The South Pacific Gyre (SPG) covers 10% of the ocean's surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 "UltraPac" cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.IMPORTANCE The South Pacific Gyre, due to its vast size and remoteness, is one of the least-studied oceanic regions on earth. However, both remote sensing and in situ measurements indicated that the activity of its microbial community contributes significantly to global biogeochemical cycles. Presented here is an unparalleled investigation of the microbial community of the SPG from 20- to 5,000-m depths covering a geographic distance of ∼7,000 km. This insight was achieved through the development of a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. The pipeline is well comparable to onshore systems based on the Illumina platforms and yields microbial community data in less than 35 h after sampling. Going forward, the ability to gain on-site knowledge of a remote microbial community will permit hypothesis-driven research, through the generation of novel scientific questions and subsequent additional targeted sampling efforts.


Subject(s)
Bacteria/isolation & purification , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence , Microbiota , Seawater/microbiology , Bacteria/classification , Pacific Ocean
8.
BMC Microbiol ; 19(1): 249, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31703615

ABSTRACT

Following publication of the original article [1], we have been notified that three of the primer names identified as most promising candidates for fungal community surveys were incorrectly renamed following the primer nomenclature system proposed by Gargas & DePriest [2].

9.
BMC Microbiol ; 18(1): 190, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458701

ABSTRACT

BACKGROUND: Several fungi-specific primers target the 18S rRNA gene sequence, one of the prominent markers for fungal classification. The design of most primers goes back to the last decades. Since then, the number of sequences in public databases increased leading to the discovery of new fungal groups and changes in fungal taxonomy. However, no reevaluation of primers was carried out and relevant information on most primers is missing. With this study, we aimed to develop an 18S rRNA gene sequence primer toolkit allowing an easy selection of the best primer pair appropriate for different sequencing platforms, research aims (biodiversity assessment versus isolate classification) and target groups. RESULTS: We performed an intensive literature research, reshuffled existing primers into new pairs, designed new Illumina-primers, and annealing blocking oligonucleotides. A final number of 439 primer pairs were subjected to in silico PCRs. Best primer pairs were selected and experimentally tested. The most promising primer pair with a small amplicon size, nu-SSU-1333-5'/nu-SSU-1647-3' (FF390/FR-1), was successful in describing fungal communities by Illumina sequencing. Results were confirmed by a simultaneous metagenomics and eukaryote-specific primer approach. Co-amplification occurred in all sample types but was effectively reduced by blocking oligonucleotides. CONCLUSIONS: The compiled data revealed the presence of an enormous diversity of fungal 18S rRNA gene primer pairs in terms of fungal coverage, phylum spectrum and co-amplification. Therefore, the primer pair has to be carefully selected to fulfill the requirements of the individual research projects. The presented primer toolkit offers comprehensive lists of 164 primers, 439 primer combinations, 4 blocking oligonucleotides, and top primer pairs holding all relevant information including primer's characteristics and performance to facilitate primer pair selection.


Subject(s)
DNA Primers/genetics , DNA, Fungal/genetics , RNA, Ribosomal, 18S/genetics , Biodiversity , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , Species Specificity
10.
Nucleic Acids Res ; 44(11): 5022-33, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27166378

ABSTRACT

Molecular sequences in public databases are mostly annotated by the submitting authors without further validation. This procedure can generate erroneous taxonomic sequence labels. Mislabeled sequences are hard to identify, and they can induce downstream errors because new sequences are typically annotated using existing ones. Furthermore, taxonomic mislabelings in reference sequence databases can bias metagenetic studies which rely on the taxonomy. Despite significant efforts to improve the quality of taxonomic annotations, the curation rate is low because of the labor-intensive manual curation process. Here, we present SATIVA, a phylogeny-aware method to automatically identify taxonomically mislabeled sequences ('mislabels') using statistical models of evolution. We use the Evolutionary Placement Algorithm (EPA) to detect and score sequences whose taxonomic annotation is not supported by the underlying phylogenetic signal, and automatically propose a corrected taxonomic classification for those. Using simulated data, we show that our method attains high accuracy for identification (96.9% sensitivity/91.7% precision) as well as correction (94.9% sensitivity/89.9% precision) of mislabels. Furthermore, an analysis of four widely used microbial 16S reference databases (Greengenes, LTP, RDP and SILVA) indicates that they currently contain between 0.2% and 2.5% mislabels. Finally, we use SATIVA to perform an in-depth evaluation of alternative taxonomies for Cyanobacteria. SATIVA is freely available at https://github.com/amkozlov/sativa.


Subject(s)
Computational Biology/methods , DNA Barcoding, Taxonomic/standards , Genomics/methods , Molecular Sequence Annotation/standards , Phylogeny , Bacteria/genetics , Databases, Nucleic Acid , RNA, Ribosomal, 16S , Reproducibility of Results , Sequence Analysis, DNA , Software , Web Browser
11.
BMC Bioinformatics ; 18(1): 433, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28964270

ABSTRACT

BACKGROUND: Phylogenetic trees are an important tool to study the evolutionary relationships among organisms. The huge amount of available taxa poses difficulties in their interactive visualization. This hampers the interaction with the users to provide feedback for the further improvement of the taxonomic framework. RESULTS: The SILVA Tree Viewer is a web application designed for visualizing large phylogenetic trees without requiring the download of any software tool or data files. The SILVA Tree Viewer is based on Web Geographic Information Systems (Web-GIS) technology with a PostgreSQL backend. It enables zoom and pan functionalities similar to Google Maps. The SILVA Tree Viewer enables access to two phylogenetic (guide) trees provided by the SILVA database: the SSU Ref NR99 inferred from high-quality, full-length small subunit sequences, clustered at 99% sequence identity and the LSU Ref inferred from high-quality, full-length large subunit sequences. CONCLUSIONS: The Tree Viewer provides tree navigation, search and browse tools as well as an interactive feedback system to collect any kinds of requests ranging from taxonomy to data curation and improving the tool itself.


Subject(s)
User-Computer Interface , Databases, Genetic , Internet , Phylogeny
12.
PLoS Biol ; 12(8): e1001920, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25093819

ABSTRACT

Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.


Subject(s)
Genome, Archaeal/genetics , Genome, Bacterial/genetics , Genomics , Sequence Analysis, DNA , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Databases, Genetic , Phylogeny
13.
J Eukaryot Microbiol ; 64(3): 407-411, 2017 05.
Article in English | MEDLINE | ID: mdl-28337822

ABSTRACT

Universal taxonomic frameworks have been critical tools to structure the fields of botany, zoology, mycology, and bacteriology as well as their large research communities. Animals, plants, and fungi have relatively solid, stable morpho-taxonomies built over the last three centuries, while bacteria have been classified for the last three decades under a coherent molecular taxonomic framework. By contrast, no such common language exists for microbial eukaryotes, even though environmental '-omics' surveys suggest that protists make up most of the organismal and genetic complexity of our planet's ecosystems! With the current deluge of eukaryotic meta-omics data, we urgently need to build up a universal eukaryotic taxonomy bridging the protist -omics age to the fragile, centuries-old body of classical knowledge that has effectively linked protist taxa to morphological, physiological, and ecological information. UniEuk is an open, inclusive, community-based and expert-driven international initiative to build a flexible, adaptive universal taxonomic framework for eukaryotes. It unites three complementary modules, EukRef, EukBank, and EukMap, which use phylogenetic markers, environmental metabarcoding surveys, and expert knowledge to inform the taxonomic framework. The UniEuk taxonomy is directly implemented in the European Nucleotide Archive at EMBL-EBI, ensuring its broad use and long-term preservation as a reference taxonomy for eukaryotes.


Subject(s)
Classification , Eukaryota/classification , Animals , Bacteria/classification , Biodiversity , Databases, Nucleic Acid , Ecosystem , Environment , Eukaryota/cytology , Eukaryota/genetics , Eukaryota/physiology , Eukaryotic Cells , Fungi/classification , Phylogeny
14.
Environ Microbiol ; 18(1): 21-37, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26060021

ABSTRACT

While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Genome, Bacterial/genetics , Geologic Sediments/microbiology , Magnetosomes/genetics , Base Sequence , DNA, Bacterial/genetics , Ferrosoferric Oxide/metabolism , Genomics , Magnetosomes/metabolism , Metagenomics , Molecular Sequence Data , Multigene Family , Sequence Analysis, DNA
15.
Environ Microbiol ; 18(9): 3073-91, 2016 09.
Article in English | MEDLINE | ID: mdl-26971539

ABSTRACT

The anaerobic oxidation of methane (AOM) is mediated by consortia of anaerobic methane-oxidizing archaea (ANME) and their specific partner bacteria. In thermophilic AOM consortia enriched from Guaymas Basin, members of the ANME-1 clade are associated with bacteria of the HotSeep-1 cluster, which likely perform direct electron exchange via nanowires. The partner bacterium was enriched with hydrogen as sole electron donor and sulfate as electron acceptor. Based on phylogenetic, genomic and metabolic characteristics we propose to name this chemolithoautotrophic sulfate reducer Candidatus Desulfofervidus auxilii. Ca. D. auxilii grows on hydrogen at temperatures between 50°C and 70°C with an activity optimum at 60°C and doubling time of 4-6 days. Its genome draft encodes for canonical sulfate reduction, periplasmic and soluble hydrogenases and autotrophic carbon fixation via the reductive tricarboxylic acid cycle. The presence of genes for pili formation and cytochromes, and their similarity to genes of Geobacter spp., indicate a potential for syntrophic growth via direct interspecies electron transfer when the organism grows in consortia with ANME. This first ANME-free enrichment of an AOM partner bacterium and its characterization opens the perspective for a deeper understanding of syntrophy in anaerobic methane oxidation.


Subject(s)
Deltaproteobacteria/metabolism , Methane/metabolism , Sulfates/metabolism , Anaerobiosis , Autotrophic Processes , Carbon Cycle , Deltaproteobacteria/genetics , Electron Transport , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeny , Temperature
16.
Nucleic Acids Res ; 42(Database issue): D643-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24293649

ABSTRACT

SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive resource for up-to-date quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. SILVA provides a manually curated taxonomy for all three domains of life, based on representative phylogenetic trees for the small- and large-subunit rRNA genes. This article describes the improvements the SILVA taxonomy has undergone in the last 3 years. Specifically we are focusing on the curation process, the various resources used for curation and the comparison of the SILVA taxonomy with Greengenes and RDP-II taxonomies. Our comparisons not only revealed a reasonable overlap between the taxa names, but also points to significant differences in both names and numbers of taxa between the three resources.


Subject(s)
Archaea/classification , Bacteria/classification , Databases, Nucleic Acid , Eukaryota/classification , Genes, rRNA , Eukaryota/genetics , Genes, Archaeal , Genes, Bacterial , Internet , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Alignment , Software , Terminology as Topic
17.
Nucleic Acids Res ; 41(1): e1, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-22933715

ABSTRACT

16S ribosomal RNA gene (rDNA) amplicon analysis remains the standard approach for the cultivation-independent investigation of microbial diversity. The accuracy of these analyses depends strongly on the choice of primers. The overall coverage and phylum spectrum of 175 primers and 512 primer pairs were evaluated in silico with respect to the SILVA 16S/18S rDNA non-redundant reference dataset (SSURef 108 NR). Based on this evaluation a selection of 'best available' primer pairs for Bacteria and Archaea for three amplicon size classes (100-400, 400-1000, ≥ 1000 bp) is provided. The most promising bacterial primer pair (S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21), with an amplicon size of 464 bp, was experimentally evaluated by comparing the taxonomic distribution of the 16S rDNA amplicons with 16S rDNA fragments from directly sequenced metagenomes. The results of this study may be used as a guideline for selecting primer pairs with the best overall coverage and phylum spectrum for specific applications, therefore reducing the bias in PCR-based microbial diversity studies.


Subject(s)
Archaea/genetics , Bacteria/genetics , DNA Primers , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Biodiversity , Computer Simulation , Genes, rRNA , Genetic Variation , Metagenome
18.
Nucleic Acids Res ; 41(Database issue): D590-6, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23193283

ABSTRACT

SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.


Subject(s)
Databases, Nucleic Acid , Genes, rRNA , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Eukaryota/genetics , High-Throughput Nucleotide Sequencing , Internet , Software
19.
Proc Natl Acad Sci U S A ; 109(2): 506-10, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22203982

ABSTRACT

Eutrophication and global climate change lead to expansion of hypoxia in the ocean, often accompanied by the production of hydrogen sulfide, which is toxic to higher organisms. Chemoautotrophic bacteria are thought to buffer against increased sulfide concentrations by oxidizing hydrogen sulfide before its diffusion to oxygenated surface waters. Model organisms from such environments have not been readily available, which has contributed to a poor understanding of these microbes. We present here a detailed study of "Sulfurimonas gotlandica" str. GD1, an Epsilonproteobacterium isolated from the Baltic Sea oxic-anoxic interface, where it plays a key role in nitrogen and sulfur cycling. Whole-genome analysis and laboratory experiments revealed a high metabolic flexibility, suggesting a considerable capacity for adaptation to variable redox conditions. S. gotlandica str. GD1 was shown to grow chemolithoautotrophically by coupling denitrification with oxidation of reduced sulfur compounds and dark CO(2) fixation. Metabolic versatility was further suggested by the use of a range of different electron donors and acceptors and organic carbon sources. The number of genes involved in signal transduction and metabolic pathways exceeds those of other Epsilonproteobacteria. Oxygen tolerance and environmental-sensing systems combined with chemotactic responses enable this organism to thrive successfully in marine oxygen-depletion zones. We propose that S. gotlandica str. GD1 will serve as a model organism in investigations that will lead to a better understanding how members of the Epsilonproteobacteria are able to cope with water column anoxia and the role these microorganisms play in the detoxification of sulfidic waters.


Subject(s)
Adaptation, Physiological/physiology , Epsilonproteobacteria/growth & development , Epsilonproteobacteria/genetics , Genome, Bacterial/genetics , Hydrogen Sulfide/metabolism , Anaerobiosis , Base Sequence , Carbon Dioxide/metabolism , Flow Cytometry , Genomics/methods , Germany , Metabolic Networks and Pathways/genetics , Models, Theoretical , Molecular Sequence Annotation , Molecular Sequence Data , Oceans and Seas , Oxidation-Reduction , Sequence Analysis, DNA , Signal Transduction/genetics , Species Specificity
20.
Environ Microbiol ; 16(9): 2723-38, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24447589

ABSTRACT

The gill chamber of deep-sea hydrothermal vent shrimp Rimicaris exoculata hosts a dense community of epibiotic bacteria dominated by filamentous Epsilonproteobacteria and Gammaproteobacteria. Using metagenomics on shrimp from the Rainbow hydrothermal vent field, we showed that both epibiont groups have the potential to grow autotrophically and oxidize reduced sulfur compounds or hydrogen with oxygen or nitrate. For carbon fixation, the Epsilonproteobacteria use the reductive tricarboxylic acid cycle, whereas the Gammaproteobacteria use the Calvin-Benson-Bassham cycle. Only the epsilonproteobacterial epibionts had the genes necessary for producing ammonium. This ability likely minimizes direct competition between epibionts and also broadens the spectrum of environmental conditions that the shrimp may successfully inhabit. We identified genes likely to be involved in shrimp-epibiont interactions, as well as genes for nutritional and detoxification processes that might benefit the host. Shrimp epibionts at Rainbow are often coated with iron oxyhydroxides, whose origin is intensely debated. We identified 16S rRNA sequences and functional genes affiliated with iron-oxidizing Zetaproteobacteria, which indicates that biological iron oxidation might play a role in forming these deposits. Fluorescence in situ hybridizations confirmed the presence of active Zetaproteobacteria in the R. exoculata gill chamber, thus providing the first evidence for a Zetaproteobacteria-invertebrate association.


Subject(s)
Decapoda/microbiology , Epsilonproteobacteria/metabolism , Gammaproteobacteria/metabolism , Gills/microbiology , Metagenomics , Animals , Carbon Cycle , Chemoautotrophic Growth , DNA, Bacterial/genetics , Epsilonproteobacteria/genetics , Gammaproteobacteria/genetics , Hydrothermal Vents , In Situ Hybridization, Fluorescence , Photosynthesis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL