Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Publication year range
1.
Diabetes Obes Metab ; 26(5): 1658-1669, 2024 May.
Article in English | MEDLINE | ID: mdl-38312016

ABSTRACT

AIM: Myo-inositol supplementation from ~13 weeks' gestation reportedly improves glycaemia regulation in metabolically at-risk women, with speculation that earlier supplementation might bring further improvement. However, the NiPPeR trial of a myo-inositol-containing supplement starting preconception did not lower gestational glycaemia in generally healthy women. We postulated that the earlier timing of supplementation influences the maternal metabolic adaptation for gestational glycaemia regulation. METHODS: In total, 585 women were recruited from Singapore, UK and New Zealand for the NiPPeR study. We examined associations of plasma myo-inositol concentrations at 7 and 28 weeks' gestation with 28 weeks plasma glucose (PG; fasting, and 1 h and 2 h in 75 g oral glucose tolerance test) and insulin indices using linear regression adjusting for covariates. RESULTS: Higher 7-week myo-inositol, but not 28-week myo-inositol, associated with higher 1 h PG [ßadj (95% confidence intervals) 0.05 (0.01, 0.09) loge mmol/L per loge µmol/L, p = .022] and 2 h PG [0.08 (0.03, 0.12), p = .001]; equivalent to 0.39 mmol/L increase in 2 h PG for an average 7-week myo-inositol increase of 23.4 µmol/L with myo-inositol supplementation. Higher 7-week myo-inositol associated with a lower 28-week Stumvoll index (first phase), an approximation of insulin secretion [-0.08 (-0.15, -0.01), p = .020] but not with 28-week Matsuda insulin sensitivity index. However, the clinical significance of a 7-week myo-inositol-related increase in glycaemia was limited as there was no association with gestational diabetes risk, birthweight and cord C-peptide levels. In-silico modelling found higher 28-week myo-inositol was associated with lower gestational glycaemia in White, but not Asian, women after controlling for 7-week myo-inositol effects. CONCLUSION: To our knowledge, our study provides the first evidence that increasing first trimester plasma myo-inositol may slightly exacerbate later pregnancy post-challenge glycaemia, indicating that the optimal timing for starting prenatal myo-inositol supplementation needs further investigation.


Subject(s)
Diabetes, Gestational , Inositol , Pregnancy , Female , Humans , Inositol/therapeutic use , Diabetes, Gestational/drug therapy , Dietary Supplements , Glucose Tolerance Test , Insulin
2.
Rapid Commun Mass Spectrom ; 35(10): e9074, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33634521

ABSTRACT

RATIONALE: Despite a wide range of potential applications, magnesium (Mg) isotope composition has been so far sparsely measured in reference materials with a biological matrix, which is important for the quality control of the results. We describe a method enabling the chemical separation of Mg in geological and biological materials and the determination of its stable isotope composition. METHODS: Different geological (BHVO-1, BHVO-2, BCR-1, and IAPSO) and biological (SRM-1577c, BCR-383, BCR380R, ERM-CE464, DORM-2, DORM-4, TORT-3, and FBS) reference materials were used to test the performance of a new sample preparation procedure for Mg isotopic analysis. The procedure consisted of a simple three-stage elution method to separate Mg from the matrix. Mg isotopic analyses were performed in two different laboratories and with three different multi-collector inductively coupled plasma mass spectrometry instruments. RESULTS: The biological reference materials show a wide range of δ26 Mg values (relative to DSM3 standard), spanning over 2‰, from 0.52 ± 0.29‰ (2SD, n = 7) in bovine liver (SRM-1577c) to -1.45 ± 0.20‰ (2SD, n = 5) in tuna fish (ERM-CE464), with an external precision of 0.03‰ (2SD, n = 85). CONCLUSIONS: This study indicates that isotopic measurements of Mg in biological reference materials show good performance, with the results being within the accepted range. We confirmed that δ26 Mg values in liver are the most positive of all biological materials reported so far.


Subject(s)
Isotopes/analysis , Magnesium/analysis , Mass Spectrometry/methods , Animals , Cattle , Liver/chemistry , Meat/analysis , Tuna
3.
J Paediatr Child Health ; 57(9): 1414-1419, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33847432

ABSTRACT

AIM: To assess different techniques to measure body composition in paediatric patients with inflammatory bowel disease using dual energy X-ray absorptiometry as a reference method. We hypothesised that a three-compartment model may demonstrate superiority over other methods as skinfold thickness equations and bioelectrical impedance analysis. METHODS: Body composition was assessed using skinfold thickness equations, bioelectrical impedance analysis and the three-compartment model. Data obtained with these methods were compared to the results obtained by dual energy X-ray absorptiometry. Statistical analysis was performed using Spearman's correlation and Bland-Altman's limits of agreement method. RESULTS: Twenty-one paediatric patients with inflammatory bowel disease were included: 11 females and 10 males; mean age for the entire group: 14.3 years, range 12-16 years. In children with inflammatory bowel disease, skinfold thickness equations, bioelectrical impedance analysis and the three-compartment model showed reliable measurements with small differences in the percentage of total body fat and good limits of agreements. CONCLUSION: The assessment of body composition using bioelectrical impedance analysis provides a valid and accurate method in children with inflammatory bowel disease as compared to dual energy X-ray absorptiometry. In the future, superiority of 3-compartment model in research and clinical settings of nutritional intervention and disease status in children with inflammatory bowel disease remains to be demonstrated.


Subject(s)
Body Composition , Inflammatory Bowel Diseases , Absorptiometry, Photon , Adipose Tissue , Adolescent , Body Mass Index , Child , Electric Impedance , Female , Humans , Male , Skinfold Thickness
4.
Alzheimers Dement ; 17(3): 543-552, 2021 03.
Article in English | MEDLINE | ID: mdl-33103819

ABSTRACT

INTRODUCTION: Counteracting impaired brain glucose metabolism with ketones may improve cognition in mild cognitive impairment (MCI). METHODS: Cognition, plasma ketone response, and metabolic profile were assessed before and 6 months after supplementation with a ketogenic drink containing medium chain triglyceride (ketogenic medium chain triglyceride [kMCT]; 15 g twice/day; n = 39) or placebo (n = 44). RESULTS: Free and cued recall (Trial 1; P = .047), verbal fluency (categories; P = .024), Boston Naming Test (total correct answers; P = .033), and the Trail-Making Test (total errors; P = .017) improved significantly in the kMCT group compared to placebo (analysis of covariance; pre-intervention score, sex, age, education, and apolipoprotein E4 as covariates). Some cognitive outcomes also correlated positively with plasma ketones. Plasma metabolic profile and ketone response were unchanged. CONCLUSIONS: This kMCT drink improved cognitive outcomes in MCI, at least in part by increasing blood ketone level. These data support further assessment of MCI progression to Alzheimer's disease.


Subject(s)
Beverages , Cognition/physiology , Cognitive Dysfunction/metabolism , Diet, Ketogenic , Triglycerides/metabolism , Aged , Female , Humans , Ketones/blood , Ketones/metabolism , Male , Neuropsychological Tests/statistics & numerical data
5.
Anal Chem ; 92(13): 8750-8758, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32460479

ABSTRACT

We developed and validated a reliable, robust, and easy-to-implement quantitative method for multielemental analysis of low-volume samples. Our ICP-MS-based method comprises the analysis of 20 elements (Mg, P, S, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, Se, Br, Rb, Sr, Mo, I, Cs, and Ba) in 10 µL of serum and 12 elements (Mg, S, Mn, Fe, Co, Cu, Zn Se, Br, Rb, Mo, and Cs) in less than 250 000 cells. As a proof-of-concept, we analyzed the elemental profiles of serum and sorted immune T cells derived from naïve and tumor-bearing mice. The results indicate a tumor systemic effect on the elemental profiles of both serum and T cells. Our approach highlights promising applications of multielemental analysis in precious samples such as rare cell populations or limited volumes of biofluids that could provide a deeper understanding of the essential role of elements as cofactors in biological and pathological processes.


Subject(s)
Inorganic Chemicals/analysis , Mass Spectrometry/methods , Neoplasms/chemistry , Animals , Cell Line, Tumor , Copper/analysis , Copper/blood , Inorganic Chemicals/blood , Limit of Detection , Magnesium/analysis , Magnesium/blood , Mice , Mice, Inbred C57BL , Neoplasms/pathology , T-Lymphocytes/chemistry , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transplantation, Homologous , Zinc/analysis , Zinc/blood
6.
Anal Bioanal Chem ; 412(28): 7871-7880, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32886151

ABSTRACT

Previous studies support that myo- and D-chiro-inositol isomers are promising bioactives for the treatment of women with polycystic ovary syndrome and for lowering the risk of gestational diabetes mellitus in pregnant women, whereas scyllo-inositol may have some benefits for neurological disorders (e.g., Alzheimer's disease). Though potentially useful to better understand inositol isomer metabolism and study their role in health and disease, routine analysis of inositol isomers in plasma and urine with a single analytical method is not yet feasible due to the lack of a suitable analytical assay. To address this, we developed and validated a robust ultra-high-performance-liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the quantification of inositol isomers in plasma and urine. This method resolves seven inositol isomers with accurate quantification of total chiro- (D and L enantiomers), myo-, and scyllo-inositols and is semi-quantitative for neo-inositol. For urine and plasma myo-inositol, the method repeatability and intermediate reproducibility were below 6% and 8%, respectively. Then, for both chiro- and scyllo-inositols, repeatability and intermediate reproducibility were below 10% and 14%, respectively. A pilot study was carried out to quantify and compare the pattern of inositol isomers in urine and plasma of non-pregnant and pregnant women and showed for the first time that urinary myo- and scyllo-inositol concentrations were significantly higher for women in the third trimester of pregnancy compared with non-pregnant women. These findings warrant further research to understand the biological significance of the observed differences in inositol profiles and suggest a potential role of scyllo-inositol.Graphical abstract Plasma and urinary inositol isomer profiles measured by UHPLC-MS/MS reveal differences in scyllo-inositol levels between non-pregnant and pregnant women.


Subject(s)
Chromatography, High Pressure Liquid/methods , Inositol/analysis , Tandem Mass Spectrometry/methods , Case-Control Studies , Female , Humans , Inositol/blood , Inositol/urine , Limit of Detection , Pilot Projects , Pregnancy , Reproducibility of Results
7.
Int J Mol Sci ; 21(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899421

ABSTRACT

Steady hematopoiesis is essential for lifelong production of all mature blood cells. Hematopoietic stem and progenitor cells (HSPCs) found in the bone marrow ensure hematopoietic homeostasis in an organism. Failure of this complex process, which involves a fine balance of self-renewal and differentiation fates, often result in severe hematological conditions such as leukemia and lymphoma. Several molecular and metabolic programs, internal or in close interaction with the bone marrow niche, have been identified as important regulators of HSPC function. More recently, nutrient sensing pathways have emerged as important modulators of HSC homing, dormancy, and function in the bone marrow. Here we describe a method for reliable measurement of various amino acids and minerals in different rare bone marrow (BM) populations, namely HSPCs. We found that the amino acid profile of the most primitive hematopoietic compartments (KLS) did not differ significantly from the one of their direct progenies (common myeloid progenitor CMP), while granulocyte-monocyte progenitors (GMPs), on the opposite of megakaryocyte-erythroid progenitors (MEPs), have higher content of the majority of amino acids analyzed. Additionally, we identified intermediates of the urea cycle to be differentially expressed in the KLS population and were found to lower mitochondrial membrane potential, an established readout on self-renewal capability. Moreover, we were able to profile for the first time 12 different minerals and detect differences in elemental contents between different HSPC compartments. Importantly, essential dietary trace elements, such as iron and molybdenum, were found to be enriched in granulocyte-monocyte progenitors (GMPs). We envision this amino acid and mineral profiling will allow identification of novel metabolic and nutrient sensing pathways important in HSPC fate regulation.


Subject(s)
Amino Acids/analysis , Bone Marrow/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Minerals/analysis , Animals , Bone Marrow/growth & development , Cell Differentiation , Cell Lineage , Cell Proliferation , Female , Hematopoietic Stem Cells/cytology , Mice
8.
Am J Physiol Endocrinol Metab ; 315(4): E454-E459, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29920213

ABSTRACT

In the postprandial state, glucose homeostasis is challenged by macronutrient intake, including proteins that trigger insulin secretion and provide glucose precursors. However, little is known about the postprandial response of gluconeogenesis to a protein meal. We aimed to quantify the evolution of fractional gluconeogenesis after a meat meal. Thirteen healthy subjects received oral doses of D2O. After fasting overnight, they ingested a steak (120 g). Glycemia, insulinemia, and 2H enrichments in glucose and plasma water were measured for 8 h after the meal. Fractional gluconeogenesis was assessed using the average method. Glucose was stable for 5 h and then decreased. There was a slight increase of insulin 1 h after the meal. 2H enrichment in the carbon 5 position of glucose (C5) increased after 2 h, whereas it decreased in plasma water. Consequently, fractional gluconeogenesis increased from 68.2 ± 7.2% before the meal to 75.5 ± 5.8% 8 h after the meal, the latter corresponding to 22 h without a glucose supply. These values are consistent with the exhaustion of glycogen stores after 24 h but represent the highest among values in the literature. The impact of methodological conditions is discussed.


Subject(s)
Blood Glucose/metabolism , Body Water/metabolism , Dietary Proteins , Gluconeogenesis/physiology , Insulin/metabolism , Postprandial Period/physiology , Red Meat , Adult , Deuterium Oxide , Fasting , Female , Healthy Volunteers , Humans , Male , Plasma/metabolism , Time Factors , Young Adult
9.
J Nutr ; 147(5): 807-815, 2017 05.
Article in English | MEDLINE | ID: mdl-28381530

ABSTRACT

Background: Protein ingestion is important in enhancing whole-body protein balance in children. The effect of discrete bolus protein ingestion on acute postexercise recovery has yet to be determined.Objective: This study determined the effect of increasing doses of ingested protein on postexercise whole-body leucine balance in healthy, active children.Methods: Thirty-five children (26 boys, 9 girls; age range: 9-13 y; weight mean ± SD: 44.9 ± 10.6 kg) underwent a 5-d adaptation diet (0.95 g protein ⋅ kg-1 ⋅ d-1) before performing 20 min of cycling 3 times with a concurrent, primed, constant infusion of [13C]leucine. After exercise, participants consumed an isoenergetic beverage (140 kcal) containing variable amounts of bovine skim-milk protein and carbohydrates (sucrose) (0, 5, 10, and 15 g protein made up with 35, 30, 25, and 20 g carbohydrates, respectively). Blood and breath samples were taken over the 3 h of recovery to determine non-steady state whole-body leucine oxidation (LeuOX) and net leucine balance (LeuBAL).Results: LeuOX (secondary outcome) peaked 60 min after beverage ingestion and demonstrated a relative dose-response over the 3 h of recovery (15 g = 10 > 5 > 0 g; P < 0.001). LeuBAL (primary outcome) demonstrated a dose-response over the 3 h [15 g (24.2 ± 8.2 mg/kg) > 10 g (11.6 ± 4.3 mg/kg) > 5 g (5.7 ± 1.9 mg/kg) > 0 g (-3.0 ± 1.7 mg/kg); all P < 0.01] with all conditions different from zero (all P < 0.001).Conclusions: Over the 3-h postexercise period, LeuBAL was negative with carbohydrate ingestion alone; however, the co-ingestion of carbohydrates and 5 g high-quality dietary protein was sufficient to promote a positive postexercise whole-body protein balance in healthy, active children. Moreover, LeuBAL increased in a dose-dependent manner within the protein range studied. Children should consider consuming a source of dietary protein after physical activity to enhance whole-body anabolism. This trial was registered at clinicaltrials.gov as NCT01598935.


Subject(s)
Dietary Proteins/pharmacology , Exercise/physiology , Leucine/metabolism , Sports Nutritional Physiological Phenomena , Adolescent , Animals , Child , Diet , Dietary Carbohydrates/administration & dosage , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Dose-Response Relationship, Drug , Eating , Female , Humans , Male , Milk , Reference Values
10.
J Nutr ; 146(11): 2244-2251, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27798329

ABSTRACT

BACKGROUND: Increased dietary whole-grain intake may protect against cardiovascular disease (CVD). OBJECTIVE: The objective was to evaluate the efficacy of whole grains compared with refined grains on body composition, hypertension, and related mediators of CVD in overweight and obese adults. METHODS: We conducted a double-blind, randomized, controlled crossover trial in 40 overweight or obese men and women aged <50 y with no known history of CVD. Complete whole-grain and refined-grain diets were provided for two 8-wk periods, with a 10-wk washout between diets. Macronutrient composition was matched, except for the inclusion of either whole grains or refined grains (50 g/1000 kcal in each diet). Measurements included blood pressure, body composition, blood lipids and adiponectin, and markers of inflammation and glycemia. RESULTS: Thirty-three participants (6 men and 27 women) completed the trial [mean ± SD age: 39 ± 7 y; mean ± SD body mass index (in kg/m2): 33.1 ± 4.3]. Decreases in diastolic blood pressure were -5.8 mm Hg (95% CI: -7.7, -4.0 mm Hg) after the whole-grain diet and -1.6 mm Hg (95% CI: -4.4, 1.3 mm Hg) after the control diet (between effect, P = 0.01). Decreases in plasma adiponectin were -0.1 (95% CI: -0.9, 0.7) after the whole-grain diet and -1.4 (95% CI: -2.6, -0.3) after the control diet (between effect, P = 0.05). Decreases in diastolic blood pressure correlated with the circulating adiponectin concentration (r = 0.35, P = 0.04). Substantial reductions in body weight, fat loss, systolic blood pressure, total cholesterol, and LDL cholesterol were observed during both diet periods, with no relevant difference between them. CONCLUSIONS: The improvement in diastolic blood pressure was >3-fold greater in overweight and obese adults when they consumed a whole-grain compared with a refined-grain diet. Because diastolic blood pressure predicts mortality in adults aged <50 y, increased whole-grain intake may provide a functional approach to control hypertension. This may benefit patients at risk of vascular-related morbidity and mortality. This trial was registered at clinicaltrials.gov as NCT01411540.


Subject(s)
Cardiovascular Diseases/prevention & control , Diet , Overweight , Whole Grains , Adult , Blood Glucose , Blood Pressure , Body Composition , Double-Blind Method , Female , Humans , Insulin Resistance , Lipids/blood , Male , Middle Aged , Risk Factors
11.
Anal Biochem ; 499: 1-7, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26827992

ABSTRACT

Plasma alkylresorcinols are increasingly analyzed in cohort studies to improve estimates of whole grain intake and their relationship with disease incidence. Current methods require large volumes of solvent (>10 ml/sample) and have relatively low daily sample throughput. We tested five different supported extraction methods for extracting alkylresorcinols from plasma and improved a normal-phase liquid chromatography coupled to a tandem mass spectrometer method to reduce sample analysis time. The method was validated and compared with gas chromatography-mass spectrometry analysis. Sample preparation with HybridSPE supported extraction was most effective for alkylresorcinol extraction, with recoveries of 77-82% from 100 µl of plasma. The use of 96-well plates allowed extraction of 160 samples per day. Using a 5-cm NH2 column and heptane reduced run times to 3 min. The new method had a limit of detection and limit of quantification equivalent to 1.1-1.8 nmol/L and 3.5-6.1 nmol/L plasma, respectively, for the different alkylresorcinol homologues. Accuracy was 93-105%, and intra- and inter-batch precision values were 4-18% across different plasma concentrations. This method makes it possible to quantify plasma alkylresorcinols in 100 µl of plasma at a rate of at least 160 samples per day without the need for large volumes of organic solvents.


Subject(s)
Eating , High-Throughput Screening Assays , Resorcinols/blood , Secale/chemistry , Tandem Mass Spectrometry , Whole Grains/chemistry , Biomarkers/blood , Chromatography, High Pressure Liquid , Humans
12.
Int J Mol Sci ; 17(8)2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27529220

ABSTRACT

BACKGROUND: Growth failure and delayed puberty are well known features of children and adolescents with inflammatory bowel disease (IBD), in addition to the chronic course of the disease. Urinary metabonomics was applied in order to better understand metabolic changes between healthy and IBD children. METHODS: 21 Pediatric patients with IBD (mean age 14.8 years, 8 males) were enrolled from the Pediatric Gastroenterology Outpatient Clinic over two years. Clinical and biological data were collected at baseline, 6, and 12 months. 27 healthy children (mean age 12.9 years, 16 males) were assessed at baseline. Urine samples were collected at each visit and subjected to ¹H Nuclear Magnetic Resonance (NMR) spectroscopy. RESULTS: Using ¹H NMR metabonomics, we determined that urine metabolic profiles of IBD children differ significantly from healthy controls. Metabolic differences include central energy metabolism, amino acid, and gut microbial metabolic pathways. The analysis described that combined urinary urea and phenylacetylglutamine-two readouts of nitrogen metabolism-may be relevant to monitor metabolic status in the course of disease. CONCLUSION: Non-invasive sampling of urine followed by metabonomic profiling can elucidate and monitor the metabolic status of children in relation to disease status. Further developments of omic-approaches in pediatric research might deliver novel nutritional and metabolic hypotheses.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/urine , Adolescent , Child , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/urine , Crohn Disease/metabolism , Crohn Disease/urine , Female , Humans , Magnetic Resonance Spectroscopy , Male , Metabolomics
13.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999805

ABSTRACT

We previously reported that a combined myo-inositol, probiotics, and enriched micronutrient supplement (intervention) taken preconception and in pregnancy reduced postpartum blood loss (PBL) and major postpartum hemorrhage compared with a standard micronutrient supplement (control), as secondary outcomes of the NiPPeR trial. This study aimed to identify the intervention components that may contribute to this effect. Associations of plasma concentrations of myo-inositol and vitamins B2, B6, B12, and D at preconception (before and after supplementation), early (~7-weeks), and late pregnancy (~28-weeks) with PBL were assessed by multiple linear regression, adjusting for site, ethnicity, preconception BMI, parity, and previous cesarean section. Amongst 583 women, a higher concentration of myo-inositol in early pregnancy was associated with a PBL reduction [ßadj -1.26 (95%CI -2.23, -0.29) mL per µmol/L myo-inositol increase, p = 0.011]. Applying this co-efficient to the increase in mean 7-week-myo-inositol concentration of 23.4 µmol/L with the intervention equated to a PBL reduction of 29.5 mL (~8.4% of mean PBL of 350 mL among controls), accounting for 84.3% of the previously reported intervention effect of 35 mL. None of the examined vitamins were associated with PBL. Therefore, myo-inositol may be a key intervention component mediating the PBL reduction. Further work is required to determine the mechanisms involved.


Subject(s)
Dietary Supplements , Inositol , Postpartum Hemorrhage , Humans , Female , Inositol/blood , Inositol/administration & dosage , Pregnancy , Adult , Postpartum Hemorrhage/blood , Postpartum Hemorrhage/prevention & control , Micronutrients/blood , Maternal Nutritional Physiological Phenomena , Postpartum Period/blood
14.
J Nutr ; 143(6): 766-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23616503

ABSTRACT

Epidemiological studies consistently find that diets rich in whole-grain (WG) cereals lead to decreased risk of disease compared with refined grain (RG)-based diets. Aside from a greater amount of fiber and micronutrients, possible mechanisms for why WGs may be beneficial for health remain speculative. In an exploratory, randomized, researcher-blinded, crossover trial, we measured metabolic profile differences between healthy participants eating a diet based on WGs compared with a diet based on RGs. Seventeen healthy adult participants (11 female, 6 male) consumed a controlled diet based on either WG-rich or RG-rich foods for 2 wk, followed by the other diet after a 5-wk washout period. Both diets were the same except for the use of WG (150 g/d) or RG foods. The metabolic profiles of plasma, urine, and fecal water were measured using (1)H-nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry (plasma only). After 1 wk of intervention, the WG diet led to decreases in urinary excretion of metabolites related to protein catabolism (urea, methylguanadine), lipid (carnitine and acylcarnitines) and gut microbial (4-hydroxyphenylacetate, trimethylacetate, dimethylacetate) metabolism in men compared with the same time point during the RG intervention. There were no differences between the interventions after 2 wk. Urinary urea, carnitine, and acylcarnitine were lower at wk 1 of the WG intervention relative to the RG intervention in all participants. Fecal water short-chain fatty acids acetate and butyrate were relatively greater after the WG diet compared to the RG diet. Although based on a small population and for a short time period, these observations suggest that a WG diet may affect protein metabolism.


Subject(s)
Biomarkers/urine , Diet , Edible Grain , Intestines/microbiology , Proteins/metabolism , Acetates/analysis , Adult , Bacteria/metabolism , Biomarkers/blood , Carnitine/urine , Cross-Over Studies , Dietary Fiber , Energy Metabolism , Feces/chemistry , Female , Food Handling , Gas Chromatography-Mass Spectrometry , Health Promotion , Humans , Lipid Metabolism , Magnetic Resonance Spectroscopy , Male , Metabolome , Methylamines/analysis , Methylguanidine/urine , Middle Aged , Nicotinic Acids/analysis , Organophosphates/analysis , Phenylacetates/analysis , Sex Factors , Urea/urine
15.
Int J Sport Nutr Exerc Metab ; 23(6): 584-92, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23689036

ABSTRACT

Recent studies have demonstrated a direct link between increased exogenous CHO oxidation (CHOexog) and enhanced performance. The limiting factor for CHOexog appears to be at the level of intestinal transporters, with sodium/glucose cotransporter 1 (SGLT1) and glucose transporter Type 5 (GLUT5) responsible for glucose and fructose transport, respectively. Studies in animal models have shown that SGLT1 and intestinal glucose uptake are up-regulated by high carbohydrate diets or noncaloric sweeteners. The aim of this study was to determine the effect of preexercise ingestion of noncaloric sweeteners on CHOexog during exercise in athletes. In a randomized, crossover, double-blind fashion twenty-three healthy male cyclists (age = 29 ± 7 yrs, mass = 73.6 ± 7.4 kg, VO2peak = 68.3 ± 9.3 ml/kg/min) consumed 8 × 50 ml doses of either placebo (CON) or 1mM sucralose (SUCRA) every 15 min starting 120 min before the onset of exercise. This was followed by 2h of cycling at 48.5 ± 8.6% of VO2peak with continual ingestion of a maltodextrin drink (1.2 g/min; 828 ml/ hr). Average CHOexog during the first hour of exercise did not differ between SUCRA and CON conditions (0.226 ± 0.081 g/min vs. 0.212 ± 0.076 g/min, Δ =0.015 g/min, 95% CI -0.008 g/min, 0.038 g/min, p = .178). Blood glucose, plasma insulin and lactate, CHO and fat substrate utilization, heart rate, ratings of perceived exertion, and gastrointestinal symptoms did not differ between conditions. Our data suggest that consumption of noncaloric sweeteners in the immediate period before exercise does not lead to a significant increase in CHOexog during exercise.


Subject(s)
Bicycling/physiology , Carbohydrate Metabolism/drug effects , Exercise/physiology , Sports Nutritional Physiological Phenomena , Sucrose/analogs & derivatives , Adult , Blood Glucose/metabolism , Cross-Over Studies , Double-Blind Method , Energy Metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Glucose Transporter Type 5/genetics , Glucose Transporter Type 5/metabolism , Heart Rate , Humans , Insulin/blood , Lactic Acid/blood , Male , Oxidation-Reduction/drug effects , Oxygen Consumption , Physical Endurance , Polysaccharides/administration & dosage , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , Sucrose/administration & dosage , Young Adult
16.
Sci Rep ; 12(1): 10941, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768618

ABSTRACT

Hypomagnesemia is frequently associated with type 2 diabetes and generally correlates with unfavorable disease progression, but the magnesium status in pre-diabetic conditions remains unclear. Here, the magnesium metabolism is scrutinized in a minipig model of obesity and insulin resistance by measuring variations of the metallome-the set of inorganic elements-and the magnesium stable isotope composition in six organs of lean and obese minipigs raised on normal and Western-type diet, respectively. We found that metallomic variations are most generally insensitive to lean or obese phenotypes. The magnesium stable isotope composition of plasma, liver, kidney, and heart in lean minipigs are significantly heavier than in obese minipigs. For both lean and obese minipigs, the magnesium isotope composition of plasma and liver were negatively correlated to clinical phenotypes and plasma lipoproteins concentration as well as positively correlated to hyperinsulinemic-euglycemic clamp output. Because the magnesium isotope composition was not associated to insulin secretion, our results suggest that it is rather sensitive to whole body insulin sensitivity, opening perspectives to better comprehend the onset of insulin-resistant diabetic conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Isotopes , Magnesium , Obesity/metabolism , Swine , Swine, Miniature/metabolism
17.
Rapid Commun Mass Spectrom ; 25(20): 3019-28, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-21953956

ABSTRACT

High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry.

18.
Rapid Commun Mass Spectrom ; 25(20): 2989-94, 2011 Oct 30.
Article in English | MEDLINE | ID: mdl-21953953

ABSTRACT

Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.


Subject(s)
Blood Glucose/metabolism , Chromatography, Liquid/methods , Flow Injection Analysis/methods , Glucose/metabolism , Mass Spectrometry/methods , Breath Tests , Carbon Isotopes , Deuterium , Exercise , Glucose/administration & dosage , Humans , Kinetics , Reproducibility of Results
19.
Curr Dev Nutr ; 5(11): nzab121, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34805723

ABSTRACT

BACKGROUND: There are limited data from randomized control trials to support or refute the contention that whole-grains can enhance protein metabolism in humans. OBJECTIVES: To examine: 1) the clinical effects of a whole-grain diet on whole-body protein turnover; 2) the cellular effects of whole-grains on protein synthesis in skeletal muscle cells; and 3) the population effects of whole-grain intake on age-related muscle loss. METHODS: Adults with overweight/obesity (n = 14; age = 40 ± 7 y; BMI = 33 ± 5 kg/m2) were recruited into a crossover, randomized controlled trial (NCT01411540) in which isocaloric, macronutrient-matched whole-grain and refined-grain diets were fully provisioned for two 8-wk periods. Diets differed only in the presence of whole-grains (50 g/1000 kcal). Whole-body protein kinetics were assessed at baseline and after each diet in the fasted-state (13C-leucine) and integrated over 24 h (15N-glycine). In vitro studies using C2C12 cells assessed global protein synthesis by surface sensing of translation and anabolic signaling by Western blot. Complementary epidemiological assessments using the NHANES database assessed the effect of whole-grain intake on muscle function assessed by gait speed in older adults (n = 2783). RESULTS: Integrated 24-h net protein balance was 3-fold higher on a whole-grain diet compared with a refined-grain diet (P = 0.04). A whole-grain wheat extract increased submaximal rates of global protein synthesis (27%, P < 0.05) in vitro. In a large sample of older adults, whole-grain intake was associated with greater muscle function (OR = 0.92; 95% CI: 0.86, 0.98). CONCLUSIONS: Consuming 50 g/1000 kcal whole-grains per day promotes greater protein turnover and enhances net protein balance in adults. Whole-grains impact skeletal muscle at the cellular level, and are associated with greater muscle function in older adults. Collectively, these data point to a new mechanism whereby whole-grain consumption favorably enhances protein turnover and improves health outcomes.This clinical trial is registered on clinicaltrials.gov (identifier: NCT01411540).

20.
Anal Chem ; 82(2): 646-53, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20028023

ABSTRACT

Isotope labeled tracers are commonly used to quantify the turnover rates of various metabolic intermediates and yield information regarding physiological regulation. Studies often only consider either one nutritional state (fasted or fed) and/or one question (e.g., measure of lipid or protein turnover). In this article, we consider a novel application combining the global approach of metabonomics with widespread stable isotope labeling as a way of being able to map metabolism in open mammalian systems, an approach we call "isotopomics". A total of 45 15-week-old male Zucker rats were administrated different amounts (from 0.5 to 8 mmol/kg) of sodium [1,2-(13)C(2)] acetate. Plasma samples taken at 1, 4, and 24 h were analyzed with (13)C nuclear magnetic resonance (NMR) and gas chromatography/mass spectrometry (GC/MS) to measure (13)C isotopic enrichment of 39 plasma metabolites across a wide range of compound classes (amino acids, short-chain fatty acids, lactate, glucose, and free fatty acids). Isotopic enrichment from 0.1-7.1 mole percent excess (MPE) for the highest dose could be reliably measured in 16 metabolites, and the kinetics of their (13)C isotopic enrichment are reported. Clustering metabolites based on (13)C kinetic curves enabled highlighting of time dependent patterns of (13)C distribution through the key metabolic pathways. These kinetic and quantitative data were reported into a biochemical map. This type of isotopomic approach for mapping dynamic metabolism in an open system has great potential for advancing our mechanistic knowledge of how different interventions and diseases can impact the metabolic response of animals and humans.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Magnetic Resonance Spectroscopy/methods , Sodium Acetate/metabolism , Animals , Carbon Isotopes/metabolism , Kinetics , Male , Metabolomics , Multivariate Analysis , Rats , Sodium Acetate/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL