Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38958156

ABSTRACT

Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid-base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems.


Subject(s)
Software , Molecular Dynamics Simulation , Genetic Variation , Algorithms , Thermodynamics , Proteins/chemistry , Crystallization , Nucleic Acids/chemistry
2.
Hum Genet ; 142(6): 819-834, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086329

ABSTRACT

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.


Subject(s)
Deafness , Hearing Loss , Humans , Proteome/genetics , Hearing Loss/genetics , Mutation, Missense , Deafness/genetics
3.
Int J Mol Sci ; 22(20)2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34681887

ABSTRACT

Mutations in the LMNA gene cause diseases called laminopathies. LMNA encodes lamins A and C, intermediate filaments with multiple roles at the nuclear envelope. LMNA mutations are frequently single base changes that cause diverse disease phenotypes affecting muscles, nerves, and fat. Disease-associated amino acid substitutions were mapped in silico onto three-dimensional structures of lamin A/C, revealing no apparent genotype-phenotype connections. In silico analyses revealed that seven of nine predicted partner protein binding pockets in the Ig-like fold domain correspond to sites of disease-associated amino acid substitutions. Different amino acid substitutions at the same position within lamin A/C cause distinct diseases, raising the question of whether the nature of the amino acid replacement or genetic background differences contribute to disease phenotypes. Substitutions at R249 in the rod domain cause muscular dystrophies with varying severity. To address this variability, we modeled R249Q and R249W in Drosophila Lamin C, an orthologue of LMNA. Larval body wall muscles expressing mutant Lamin C caused abnormal nuclear morphology and premature death. When expressed in indirect flight muscles, R249W caused a greater number of adults with wing posturing defects than R249Q, consistent with observations that R249W and R249Q cause distinct muscular dystrophies, with R249W more severe. In this case, the nature of the amino acid replacement appears to dictate muscle disease severity. Together, our findings illustrate the utility of Drosophila for predicting muscle disease severity and pathogenicity of variants of unknown significance.


Subject(s)
Computer Simulation , Drosophila melanogaster/metabolism , Lamin Type A/metabolism , Laminopathies/pathology , Muscular Dystrophies/pathology , Mutation , Amino Acid Substitution , Animals , Child, Preschool , Drosophila melanogaster/genetics , Female , Humans , Infant , Lamin Type A/genetics , Laminopathies/genetics , Laminopathies/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Phenotype
4.
Front Oncol ; 13: 1229507, 2023.
Article in English | MEDLINE | ID: mdl-37869077

ABSTRACT

Replication Protein A (RPA) is single-strand DNA binding protein that plays a key role in the replication and repair of DNA. RPA is a heterotrimer made of 3 subunits - RPA1, RPA2, and RPA3. Germline pathogenic variants affecting RPA1 were recently described in patients with Telomere Biology Disorders (TBD), also known as dyskeratosis congenita or short telomere syndrome. Premature telomere shortening is a hallmark of TBD and results in bone marrow failure and predisposition to hematologic malignancies. Building on the finding that somatic mutations in RPA subunit genes occur in ~1% of cancers, we hypothesized that germline RPA alterations might be enriched in human cancers. Because germline RPA1 mutations are linked to early onset TBD with predisposition to myelodysplastic syndromes, we interrogated pediatric cancer cohorts to define the prevalence and spectrum of rare/novel and putative damaging germline RPA1, RPA2, and RPA3 variants. In this study of 5,993 children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer population allele frequency (AF) < 0.1%) variants in the RPA heterotrimer genes, of which 51 cases (0.85%) had ultra-rare (AF < 0.005%) or novel variants. Compared with Genome Aggregation Database (gnomAD) non-cancer controls, there was significant enrichment of ultra-rare and novel RPA1, but not RPA2 or RPA3, germline variants in our cohort (adjusted p-value < 0.05). Taken together, these findings suggest that germline putative damaging variants affecting RPA1 are found in excess in children with cancer, warranting further investigation into the functional role of these variants in oncogenesis.

5.
Res Sq ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778238

ABSTRACT

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.

6.
Sci Rep ; 12(1): 11743, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35817949

ABSTRACT

The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.


Subject(s)
Cleft Lip , Cleft Palate , Animals , Brain/abnormalities , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Mice , Mutation , Polymorphism, Single Nucleotide
7.
Cell Mol Bioeng ; 13(5): 447-461, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33184577

ABSTRACT

INTRODUCTION: Bacteria and cancer cells share a common trait-both possess an electronegative surface that distinguishes them from healthy mammalian counterparts. This opens opportunities to repurpose antimicrobial peptides (AMPs), which are cationic amphiphiles that kill bacteria by disrupting their anionic cell envelope, into anticancer peptides (ACPs). To test this assertion, we investigate the mechanisms by which a pathogen-specific AMP, originally designed to kill bacterial Tuberculosis, potentiates the lytic destruction of drug-resistant cancers and synergistically enhances chemotherapeutic potency. MATERIALS AND METHODS: De novo peptide design, paired with cellular assays, elucidate structure-activity relationships (SAR) important to ACP potency and specificity. Using the sequence MAD1, microscopy, spectrophotometry and flow cytometry identify the peptide's anticancer mechanisms, while parallel combinatorial screens define chemotherapeutic synergy in drug-resistant cell lines and patient derived ex vivo tumors. RESULTS: SAR investigations reveal spatial sequestration of amphiphilic regions increases ACP potency, but at the cost of specificity. Selecting MAD1 as a lead sequence, mechanistic studies identify that the peptide forms pore-like supramolecular assemblies within the plasma and nuclear membranes of cancer cells to potentiate death through lytic and apoptotic mechanisms. This diverse activity enables MAD1 to synergize broadly with chemotherapeutics, displaying remarkable combinatorial efficacy against drug-resistant ovarian carcinoma cells and patient-derived tumor spheroids. CONCLUSIONS: We show that cancer-specific ACPs can be rationally engineered using nature's AMP toolbox as templates. Selecting the antimicrobial peptide MAD1, we demonstrate the potential of this strategy to open a wealth of synthetic biotherapies that offer new, combinatorial opportunities against drug resistant tumors.

SELECTION OF CITATIONS
SEARCH DETAIL