Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33833060

ABSTRACT

Parkinson's disease is characterized by accumulation of α-synuclein (αSyn). Release of oligomeric/fibrillar αSyn from damaged neurons may potentiate neuronal death in part via microglial activation. Heretofore, it remained unknown if oligomeric/fibrillar αSyn could activate the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome in human microglia and whether anti-αSyn antibodies could prevent this effect. Here, we show that αSyn activates the NLRP3 inflammasome in human induced pluripotent stem cell (hiPSC)-derived microglia (hiMG) via dual stimulation involving Toll-like receptor 2 (TLR2) engagement and mitochondrial damage. In vitro, hiMG can be activated by mutant (A53T) αSyn secreted from hiPSC-derived A9-dopaminergic neurons. Surprisingly, αSyn-antibody complexes enhanced rather than suppressed inflammasome-mediated interleukin-1ß (IL-1ß) secretion, indicating these complexes are neuroinflammatory in a human context. A further increase in inflammation was observed with addition of oligomerized amyloid-ß peptide (Aß) and its cognate antibody. In vivo, engraftment of hiMG with αSyn in humanized mouse brain resulted in caspase-1 activation and neurotoxicity, which was exacerbated by αSyn antibody. These findings may have important implications for antibody therapies aimed at depleting misfolded/aggregated proteins from the human brain, as they may paradoxically trigger inflammation in human microglia.


Subject(s)
Inflammasomes/metabolism , Microglia/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/immunology , alpha-Synuclein/immunology , Amyloid beta-Peptides/immunology , Antibodies/immunology , Cell Differentiation , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/cytology , Microglia/cytology , Toll-Like Receptor 2/metabolism , alpha-Synuclein/genetics
2.
Alzheimers Dement ; 20(6): 4043-4065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713744

ABSTRACT

INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Biomarkers , Proteomics , Humans , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/blood , Alzheimer Disease/genetics , Male , Aged , Female , Brain/metabolism , Tauopathies/cerebrospinal fluid , Tauopathies/blood , Supranuclear Palsy, Progressive/cerebrospinal fluid , Supranuclear Palsy, Progressive/blood , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/genetics , Middle Aged , Aged, 80 and over , tau Proteins/cerebrospinal fluid
3.
Brain Behav Immun ; 114: 414-429, 2023 11.
Article in English | MEDLINE | ID: mdl-37716378

ABSTRACT

The purinoceptor P2X7R is a promising therapeutic target for tauopathies, including Alzheimer's disease (AD). Pharmacological inhibition or genetic knockdown of P2X7R ameliorates cognitive deficits and reduces pathological tau burden in mice that model aspects of tauopathy, including mice expressing mutant human frontotemporal dementia (FTD)-causing forms of tau. However, disagreements remain over which glial cell types express P2X7R and therefore the mechanism of action is unresolved. Here, we show that P2X7R protein levels increase in human AD post-mortem brain, in agreement with an upregulation of P2RX7 mRNA observed in transcriptome profiles from the AMP-AD consortium. P2X7R protein increases mirror advancing Braak stage and coincide with synapse loss. Using RNAScope we detect P2RX7 mRNA in microglia and astrocytes in human AD brain, including in the vicinity of senile plaques. In cultured microglia, P2X7R activation modulates the NLRP3 inflammasome pathway by promoting the formation of active complexes and release of IL-1ß. In astrocytes, P2X7R activates NFκB signalling and increases production of the cytokines CCL2, CXCL1 and IL-6 together with the acute phase protein Lcn2. To further explore the role of P2X7R in a disease-relevant context, we expressed wild-type or FTD-causing mutant forms of tau in mouse organotypic brain slice cultures. Inhibition of P2X7R reduces insoluble tau levels without altering soluble tau phosphorylation or synaptic localisation, suggesting a non-cell autonomous role of glial P2X7R on pathological tau aggregation. These findings support further investigations into the cell-type specific effects of P2X7R-targeting therapies in tauopathies.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Tauopathies , Animals , Humans , Mice , Alzheimer Disease/metabolism , Astrocytes/metabolism , Brain/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Microglia/metabolism , RNA, Messenger/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism
4.
Proc Natl Acad Sci U S A ; 117(31): 18591-18599, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690681

ABSTRACT

Repeat associated non-AUG (RAN) translation is found in a growing number of microsatellite expansion diseases, but the mechanisms remain unclear. We show that RAN translation is highly regulated by the double-stranded RNA-dependent protein kinase (PKR). In cells, structured CAG, CCUG, CAGG, and G4C2 expansion RNAs activate PKR, which leads to increased levels of multiple RAN proteins. Blocking PKR using PKR-K296R, the TAR RNA binding protein or PKR-KO cells, reduces RAN protein levels. p-PKR is elevated in C9orf72 ALS/FTD human and mouse brains, and inhibiting PKR in C9orf72 BAC transgenic mice using AAV-PKR-K296R or the Food and Drug Administration (FDA)-approved drug metformin, decreases RAN proteins, and improves behavior and pathology. In summary, targeting PKR, including by use of metformin, is a promising therapeutic approach for C9orf72 ALS/FTD and other expansion diseases.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein , Metformin/pharmacology , Protein Biosynthesis/drug effects , eIF-2 Kinase , Animals , Brain/metabolism , Brain/pathology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Disease Models, Animal , Frontotemporal Dementia/metabolism , Humans , Mice , Mice, Transgenic , Microsatellite Repeats/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
5.
Mol Ther ; 29(2): 859-872, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33128896

ABSTRACT

Immunotherapies designed to treat neurodegenerative tauopathies that primarily engage extracellular tau may have limited efficacy as tau is primarily intracellular. We generated tau-targeting single-chain variable fragments (scFvs) and intrabodies (iBs) from the phosphorylated tau-specific antibodies CP13 and PHF1 and the pan-tau antibody Tau5. Recombinant adeno-associated virus (rAAV) was utilized to express these antibody fragments in homozygous JNPL3 P301L tau mice. Two iBs (CP13i, PHF1i) and one scFv (PHF1s) abrogated tau pathology and delayed time to severe hindlimb paralysis. In a second tauopathy model (rTg4510), CP13i and PHF1i reduced tau pathology, but cognate scFvs did not. These data demonstrate that (1) disease-modifying efficacy does not require antibody effector functions, (2) the intracellular targeting of tau with phosphorylated tau-specific iBs is more effective than extracellular targeting with the scFvs, and (3) robust effects on tau pathology before neurodegeneration only resulted in modest disease modification as assessed by delay of severe motor phenotype.


Subject(s)
Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Secretory Pathway/drug effects , Single-Chain Antibodies/pharmacology , tau Proteins/antagonists & inhibitors , Animals , Combined Modality Therapy , Dependovirus/genetics , Disease Models, Animal , Genetic Therapy , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Mice , Mice, Transgenic , Neurodegenerative Diseases/etiology , Treatment Outcome , tau Proteins/metabolism
6.
Int J Mol Sci ; 23(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35328748

ABSTRACT

The impact of oral microbial dysbiosis on Alzheimer's disease (AD) remains controversial. Building off recent studies reporting that various microbes might directly seed or promote amyloid ß (Aß) deposition, we evaluated the effects of periodontal bacteria (Porphyromonas gingivalis, Treponema denticola) and supragingival commensal (Streptococcus gordonii) oral bacterial infection in the APP-transgenic CRND8 (Tg) mice model of AD. We tracked bacterial colonization and dissemination, and monitored effects on gliosis and amyloid deposition. Chronic oral infection did not accelerate Aß deposition in Tg mice but did induce alveolar bone resorption, IgG immune response, and an intracerebral astrogliosis (GFAP: glial fibrillary acidic protein). In contrast, intracerebral inoculation of live but not heat-killed P. gingivalis increased Aß deposition and Iba-1 (ionized calcium-binding adaptor-1) microgliosis after 8 weeks of bacterial infection but not at 4 days. These data show that there may be differential effects of infectious microbes on glial activation and amyloid deposition depending on the species and route of inoculation, and thereby provide an important framework for future studies. Indeed, these studies demonstrate marked effects on amyloid ß deposition only in a fairly non-physiologic setting where live bacteria is injected directly into the brain.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/metabolism , Amyloid , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Gliosis/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/metabolism , Porphyromonas gingivalis/metabolism
7.
Hum Mol Genet ; 28(19): 3255-3269, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31261380

ABSTRACT

Understanding the biological functions of tau variants can illuminate differential etiologies of Alzheimer's disease (AD) and primary tauopathies. Though the end-stage neuropathological attributes of AD and primary tauopathies are similar, the etiology and behavioral outcomes of these diseases follow unique and divergent trajectories. To study the divergent physiological properties of tau variants on a uniform immunogenetic background, we created somatic transgenesis CNS models of tauopathy utilizing neonatal delivery of adeno-associated viruses expressing wild-type (WT) or mutant tau in non-transgenic mice. We selected four different tau variants-WT tau associated with AD, P301L mutant tau associated with frontotemporal dementia (FTD), S320F mutant tau associated with Pick's disease and a combinatorial approach using P301L/S320F mutant tau. CNS-targeted expression of WT and P301L mutant tau results in robust tau hyperphosphorylation without tangle pathology, gradually developing age-progressive memory deficits. In contrast, the S320F variant, especially in combination with P301L, produces an AD-type tangle pathology, focal neuroinflammation and memory impairment on an accelerated time scale. Using the doubly mutated P301L/S320F tau variant, we demonstrate that combining different mutations can have an additive effect on neuropathologies and associated co-morbidities, possibly hinting at involvement of unique functional pathways. Importantly, we also show that overexpression of wild-type tau as well as an FTD-associated tau variant can lead to cognitive deficits even in the absence of tangles. Together, our data highlights the synergistic neuropathologies and associated cognitive and synaptic alterations of the combinatorial tau variant leading to a robust model of tauopathy.


Subject(s)
Central Nervous System/metabolism , Mutation , Tauopathies/genetics , tau Proteins/genetics , tau Proteins/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/psychology , Humans , Male , Mice , Mice, Transgenic , Phosphorylation , Pick Disease of the Brain/genetics , Pick Disease of the Brain/metabolism , Pick Disease of the Brain/psychology , Tauopathies/metabolism , Tauopathies/psychology
8.
Acta Neuropathol ; 141(3): 359-381, 2021 03.
Article in English | MEDLINE | ID: mdl-33496840

ABSTRACT

Accumulation of the tau protein in fibrillar intracellular aggregates is a defining feature of multiple neurodegenerative diseases collectively referred to as tauopathies. Despite intensive study of tau, there is limited information on the formation and clearance dynamics of tau inclusions. Using rAAV vectors to mediate expression of Dendra2-tagged human wild-type, P301L and pro-aggregant P301L/S320F tau proteins, with and without the addition of exogenous tau fibrillar seeds, we evaluated tau inclusion dynamics in organotypic brain slice culture (BSC) models using long-term optical pulse labeling methodology. Our studies reveal that tau inclusions typically form in 12-96 h in tauopathy BSC models. Unexpectedly, we demonstrate appreciable turnover of tau within inclusions with an average half-life of ~ 1 week when inclusions are newly formed. When BSCs with inclusions are aged in culture for extended periods, tau inclusions continue to turnover, but their half-lives increase to ~ 2 weeks and ~ 3 weeks after 1 and 2 months in culture, respectively. Individual tau inclusions can be long-lived structures that can persist for months in these BSC models and for even longer in the human brain. However, our data indicate that tau inclusions, are not 'tombstones', but dynamic structures with appreciable turnover. Understanding the cellular processes mediating this inclusion turnover may lead to new therapeutic strategies that could reverse pathological tau inclusion formation.


Subject(s)
Brain/metabolism , Brain/pathology , Neurons/metabolism , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Mice , Neurons/pathology , Organ Culture Techniques , Tauopathies/pathology
9.
Virol J ; 18(1): 66, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33781287

ABSTRACT

Beginning in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a novel pathogen that causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 has infected more than 111 million people worldwide and caused over 2.47 million deaths. Individuals infected with SARS-CoV-2 show symptoms of fever, cough, dyspnea, and fatigue with severe cases that can develop into pneumonia, myocarditis, acute respiratory distress syndrome, hypercoagulability, and even multi-organ failure. Current clinical management consists largely of supportive care as commonly administered treatments, including convalescent plasma, remdesivir, and high-dose glucocorticoids. These have demonstrated modest benefits in a small subset of hospitalized patients, with only dexamethasone showing demonstrable efficacy in reducing mortality and length of hospitalization. At this time, no SARS-CoV-2-specific antiviral drugs are available, although several vaccines have been approved for use in recent months. In this review, we will evaluate the efficacy of preclinical and clinical drugs that precisely target three different, essential steps of the SARS-CoV-2 replication cycle: the spike protein during entry, main protease (MPro) during proteolytic activation, and RNA-dependent RNA polymerase (RdRp) during transcription. We will assess the advantages and limitations of drugs that precisely target evolutionarily well-conserved domains, which are less likely to mutate, and therefore less likely to escape the effects of these drugs. We propose that a multi-drug cocktail targeting precise proteins, critical to the viral replication cycle, such as spike protein, MPro, and RdRp, will be the most effective strategy of inhibiting SARS-CoV-2 replication and limiting its spread in the general population.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Coronavirus 3C Proteases/metabolism , Humans , Immunization, Passive , RNA-Dependent RNA Polymerase/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects , COVID-19 Serotherapy
10.
Alzheimers Dement ; 17(6): 984-1004, 2021 06.
Article in English | MEDLINE | ID: mdl-33480174

ABSTRACT

Intron retention (IR) has been implicated in the pathogenesis of complex diseases such as cancers; its association with Alzheimer's disease (AD) remains unexplored. We performed genome-wide analysis of IR through integrating genetic, transcriptomic, and proteomic data of AD subjects and mouse models from the Accelerating Medicines Partnership-Alzheimer's Disease project. We identified 4535 and 4086 IR events in 2173 human and 1736 mouse genes, respectively. Quantitation of IR enabled the identification of differentially expressed genes that conventional exon-level approaches did not reveal. There were significant correlations of intron expression within innate immune genes, like HMBOX1, with AD in humans. Peptides with a high probability of translation from intron-retained mRNAs were identified using mass spectrometry. Further, we established AD-specific intron expression Quantitative Trait Loci, and identified splicing-related genes that may regulate IR. Our analysis provides a novel resource for the search for new AD biomarkers and pathological mechanisms.


Subject(s)
Alzheimer Disease , Autopsy , Brain/pathology , Disease Models, Animal , Genomics , Introns/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Homeodomain Proteins/genetics , Humans , Mice , Proteomics , Quantitative Trait Loci , Transcriptome
11.
J Biol Chem ; 294(29): 11276-11285, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31167792

ABSTRACT

Presenilins 1 and 2 (PS1 and 2) are the catalytic subunits of γ-secretase, a multiprotein protease that cleaves amyloid protein precursor and other type I transmembrane proteins. Previous studies with mouse models or cells have indicated differences in PS1 and PS2 functions. We have recently reported that clinical γ-secretase inhibitors (GSIs), initially developed to manage Alzheimer's disease and now being considered for other therapeutic interventions, are both pharmacologically and functionally distinct. Here, using CRISPR/Cas9-based gene editing, we established human HEK 293T cell lines in which endogenous PS1, PS2, or both have been knocked out. Using these knockout lines to examine differences in PS1- and PS2-mediated cleavage events, we confirmed that PS2 generates more intracellular ß-amyloid than does PS1. Moreover, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates. In exploring the question of whether differences in activity among clinical GSIs could be attributed to differential inhibition of PS1 or PS2, we noted that select GSIs inhibit PS1 and PS2 activities on specific substrates with slightly different potencies. We also found that endoproteolysis of select PS1 FAD-linked variants in human cells is more efficient than what has been previously reported for mouse cell lines. Overall, these results obtained with HEK293T cells suggest that selective PS1 or PS2 inhibition by a given GSI does not explain the previously observed differences in functional and pharmacological properties among various GSIs.


Subject(s)
Presenilin-1/physiology , Presenilin-2/physiology , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , CRISPR-Cas Systems , Gene Knockdown Techniques , HEK293 Cells , Humans , Hydrolysis , Mice , Presenilin-1/genetics , Presenilin-2/genetics , Substrate Specificity
12.
Mol Psychiatry ; 24(9): 1383-1397, 2019 09.
Article in English | MEDLINE | ID: mdl-30283031

ABSTRACT

TYROBP/DAP12 forms complexes with ectodomains of immune receptors (TREM2, SIRPß1, CR3) associated with Alzheimer's disease (AD) and is a network hub and driver in the complement subnetwork identified by multi-scale gene network studies of postmortem human AD brain. Using transgenic or viral approaches, we characterized in mice the effects of TYROBP deficiency on the phenotypic and pathological evolution of tauopathy. Biomarkers usually associated with worsening clinical phenotype (i.e., hyperphosphorylation and increased tauopathy spreading) were unexpectedly increased in MAPTP301S;Tyrobp-/- mice despite the improved learning behavior and synaptic function relative to controls with normal levels of TYROBP. Notably, levels of complement cascade initiator C1q were reduced in MAPTP301S;Tyrobp-/- mice, consistent with the prediction that C1q reduction exerts a neuroprotective effect. These observations suggest a model wherein TYROBP-KO-(knock-out)-associated reduction in C1q is associated with normalized learning behavior and electrophysiological properties in tauopathy model mice despite a paradoxical evolution of biomarker signatures usually associated with neurological decline.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Alzheimer Disease/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/metabolism , Animals , Animals, Genetically Modified , Brain/metabolism , Complement C1q/metabolism , Complement C1q/physiology , Disease Models, Animal , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice , Mice, Knockout , Mice, Transgenic , Microglia/metabolism , Phenotype , Phosphorylation , Plaque, Amyloid/metabolism , Tauopathies/genetics , tau Proteins/metabolism
13.
Alzheimers Dement ; 16(7): 1095-1098, 2020 07.
Article in English | MEDLINE | ID: mdl-32426924

ABSTRACT

From its inception in 1980, advancement of research was one of the primary missions of the Alzheimer's Association (also known as Alzheimer's Disease and Related Disorders Association) in addition to leading in family caregiver support, better care, public education, and awareness. Over the past 30 years, the Association has grown and expanded its engagement with the scientific community. In the past 10 years, its research budget has more than doubled, greatly increasing the number of research grants funded and the number of strategic projects supported. The leadership and members of the Medical and Scientific Advisory Council recognized that the growth of the Alzheimer's Association and the expanded mission of Medical & Scientific Relations Division necessitated a change in the mission and charge of the external scientific advisory function to the Association.


Subject(s)
Alzheimer Disease , Intersectoral Collaboration , Research , Societies , Humans
14.
J Biol Chem ; 293(7): 2408-2421, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29259137

ABSTRACT

The accumulation of aberrantly aggregated MAPT (microtubule-associated protein Tau) defines a spectrum of tauopathies, including Alzheimer's disease. Mutations in the MAPT gene cause frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), characterized by neuronal pathological Tau inclusions in the form of neurofibrillary tangles and Pick bodies and in some cases glial Tau pathology. Increasing evidence points to the importance of prion-like seeding as a mechanism for the pathological spread in tauopathy and other neurodegenerative diseases. Herein, using a cell culture model, we examined a multitude of genetic FTDP-17 Tau variants for their ability to be seeded by exogenous Tau fibrils. Our findings revealed stark differences between FTDP-17 Tau variants in their ability to be seeded, with variants at Pro301 and Ser320 showing robust aggregation with seeding. Similarly, we elucidated the importance of certain Tau protein regions and unique residues, including the role of Pro301 in inhibiting Tau aggregation. We also revealed potential barriers in cross-seeding between three-repeat and four-repeat Tau isoforms. Overall, these differences alluded to potential mechanistic differences between wildtype and FTDP-17 Tau variants, as well as different Tau isoforms, in influencing Tau aggregation. Furthermore, by combining two FTDP-17 Tau variants (either P301L or P301S with S320F), we generated aggressive models of tauopathy that do not require exogenous seeding. These models will allow for rapid screening of potential therapeutics to alleviate Tau aggregation without the need for exogenous Tau fibrils. Together, these studies provide novel insights in the molecular determinants that modulate Tau aggregation.


Subject(s)
Tauopathies/metabolism , tau Proteins/metabolism , Amino Acid Motifs , Humans , Neurofibrillary Tangles/chemistry , Neurofibrillary Tangles/genetics , Neurofibrillary Tangles/metabolism , Prions/chemistry , Prions/genetics , Prions/metabolism , Protein Aggregates , Tauopathies/genetics , tau Proteins/chemistry , tau Proteins/genetics
15.
Neuroimage ; 202: 116138, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31472250

ABSTRACT

Extracellular ß-amyloid (Aß) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aß and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aß deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aß production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Hippocampus , Interleukin-6/metabolism , Nerve Net , Neurites/ultrastructure , White Matter , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Diffusion Tensor Imaging , Disease Models, Animal , ErbB Receptors/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Hippocampus/pathology , Mice , Mice, Transgenic , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/pathology , White Matter/diagnostic imaging , White Matter/metabolism , White Matter/pathology
16.
Lab Invest ; 99(7): 912-928, 2019 07.
Article in English | MEDLINE | ID: mdl-30742061

ABSTRACT

In multiple neurodegenerative diseases, including Alzheimer's disease (AD), a prominent pathological feature is the aberrant aggregation and inclusion formation of the microtubule-associated protein tau. Because of the pathological association, these disorders are often referred to as tauopathies. Mutations in the MAPT gene that encodes tau can cause frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), providing the clearest evidence that tauopathy plays a causal role in neurodegeneration. However, large gaps in our knowledge remain regarding how various FTDP-17-linked tau mutations promote tau aggregation and neurodegeneration, and, more generally, how the tauopathy is linked to neurodegeneration. Herein, we review what is known about how FTDP-17-linked pathogenic MAPT mutations cause disease, with a major focus on the prion-like properties of wild-type and mutant tau proteins. The hypothesized mechanisms by which mutations in the MAPT gene promote tauopathy are quite varied and may not provide definitive insights into how tauopathy arises in the absence of mutation. Further, differences in the ability of tau and mutant tau proteins to support prion-like propagation in various model systems raise questions about the generalizability of this mechanism in various tauopathies. Notably, understanding the mechanisms of tauopathy induction and spread and tau-induced neurodegeneration has important implications for tau-targeting therapeutics.


Subject(s)
Protein Aggregation, Pathological , Tauopathies/genetics , tau Proteins/genetics , Animals , Humans , Microtubules/metabolism , Mutation , Parkinsonian Disorders/genetics , Protein Processing, Post-Translational , Protein Splicing , tau Proteins/metabolism
17.
EMBO J ; 34(12): 1674-86, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25964433

ABSTRACT

The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid-ß (Aß) production. In cells, CRF treatment increases Aß production and triggers CRF receptor 1 (CRFR1) and γ-secretase internalization. Co-immunoprecipitation studies establish that γ-secretase associates with CRFR1; this is mediated by ß-arrestin binding motifs. Additionally, CRFR1 and γ-secretase co-localize in lipid raft fractions, with increased γ-secretase accumulation upon CRF treatment. CRF treatment also increases γ-secretase activity in vitro, revealing a second, receptor-independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ-secretase activity. Unexpectedly, CRFR1 antagonists also increased Aß. These data collectively link CRF to increased Aß through γ-secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aß and in some cases preferentially increase Aß42 via complex effects on γ-secretase.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/biosynthesis , Corticotropin-Releasing Hormone/metabolism , Models, Biological , Stress, Physiological/physiology , Alzheimer Disease/etiology , Analysis of Variance , Animals , Blotting, Western , Cyclic AMP/metabolism , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Hypothalamo-Hypophyseal System/physiology , Immunoprecipitation , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Pituitary-Adrenal System/physiology , Real-Time Polymerase Chain Reaction , Receptors, Corticotropin-Releasing Hormone/metabolism
18.
Proc Natl Acad Sci U S A ; 113(35): E5212-21, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27531960

ABSTRACT

Alzheimer's disease (AD) is the most prevalent of a large group of related proteinopathies for which there is currently no cure. Here, we used Drosophila to explore a strategy to block Aß42 neurotoxicity through engineering of the Heat shock protein 70 (Hsp70), a chaperone that has demonstrated neuroprotective activity against several intracellular amyloids. To target its protective activity against extracellular Aß42, we added a signal peptide to Hsp70. This secreted form of Hsp70 (secHsp70) suppresses Aß42 neurotoxicity in adult eyes, reduces cell death, protects the structural integrity of adult neurons, alleviates locomotor dysfunction, and extends lifespan. SecHsp70 binding to Aß42 through its holdase domain is neuroprotective, but its ATPase activity is not required in the extracellular space. Thus, the holdase activity of secHsp70 masks Aß42 neurotoxicity by promoting the accumulation of nontoxic aggregates. Combined with other approaches, this strategy may contribute to reduce the burden of AD and other extracellular proteinopathies.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Drosophila melanogaster/metabolism , HSP70 Heat-Shock Proteins/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/prevention & control , Amyloid beta-Peptides/genetics , Animals , Animals, Genetically Modified , Disease Models, Animal , Drosophila melanogaster/genetics , Eye/metabolism , Female , Genetic Engineering/methods , HEK293 Cells , HSP70 Heat-Shock Proteins/genetics , Humans , Longevity/genetics , Male , Motor Disorders/genetics , Motor Disorders/metabolism , Motor Disorders/prevention & control , Neurons/metabolism , Neuroprotection/genetics , Peptide Fragments/genetics , Protein Binding
19.
Neurobiol Dis ; 110: 133-141, 2018 02.
Article in English | MEDLINE | ID: mdl-29196213

ABSTRACT

Brain expression of AAV-Ifn-γ leads to reactive gliosis, nigrostriatal degeneration and midbrain calcification in wild type mice. This mouse model phenocopies idiopathic basal ganglia calcification which is associated with Parkinsonian symptoms. To understand how the nigro-striatal pathway is selectively vulnerable to Ifn-γ, we determined if the phenotype is driven by canonical signaling intermediates, Ifngr1 and Stat1. Using focused bioinformatic analysis and rotarod testing, we show that neuroinflammation and motor abnormalities precede the appearance of midbrain neuropathologies in the brains of Ifn-γ mouse model. To test whether canonical Ifn-γ signaling is a key driver of progressive nigrostriatal degeneration, we overexpressed Ifn-γ in the brains of Ifngr1-/- and Stat1-/- mice. Expression of Ifn-γ in Ifngr1-/- mice did not result in any neuroinflammation, midbrain calcinosis or nigrostriatal degenerative pathology. Interestingly, in Stat1-/- mice, Ifn-γ expression resulted in gliosis without recapitulating the neurodegenerative phenotype. Overall, our data shows that canonical Ifn-γ signaling triggers midbrain calcinosis and nigrostriatal neurodegeneration, providing mechanistic insights into cytokine-driven selective neuronal vulnerability. Our study establishes the broader relevance of inflammatory signaling in neurodegenerative diseases and can potentially identify novel immunological targets for Parkinsonian syndromes.


Subject(s)
Brain/pathology , Interferon-gamma/metabolism , Nerve Degeneration/metabolism , Receptors, Interferon/metabolism , STAT1 Transcription Factor/metabolism , Animals , Basal Ganglia Diseases/metabolism , Basal Ganglia Diseases/pathology , Brain/metabolism , Calcinosis/metabolism , Calcinosis/pathology , Mice , Mice, Knockout , Nerve Degeneration/pathology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Signal Transduction/physiology , Interferon gamma Receptor
20.
Neurobiol Dis ; 120: 98-106, 2018 12.
Article in English | MEDLINE | ID: mdl-30195075

ABSTRACT

Mechanisms underlying α-synuclein (αSyn) mediated neurodegeneration are poorly understood. Intramuscular (IM) injection of αSyn fibrils in human A53T transgenic M83+/- mice produce a rapid model of α-synucleinopathy with highly predictable onset of motor impairment. Using varying doses of αSyn seeds, we show that αSyn-induced phenotype is largely dose-independent. We utilized the synchrony of this IM model to explore the temporal sequence of αSyn pathology, neurodegeneration and neuroinflammation. Longitudinal tracking showed that while motor neuron death and αSyn pathology occur within 2 months post IM, astrogliosis appears at a later timepoint, implying neuroinflammation is a consequence, rather than a trigger, in this prionoid model of synucleinopathy. Initiating at 3 months post IM, immune activation dominates the pathologic landscape in terminal IM-seeded M83+/- mice, as revealed by unbiased transcriptomic analyses. Our findings provide insights into the role of neuroinflammation in αSyn mediated proteostasis and neurodegeneration, which will be key in designing potential therapies.


Subject(s)
Motor Neurons/metabolism , Nerve Degeneration/metabolism , alpha-Synuclein/biosynthesis , Animals , Brain/immunology , Brain/metabolism , Brain/pathology , Female , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Transgenic , Motor Neurons/immunology , Motor Neurons/pathology , Nerve Degeneration/immunology , Nerve Degeneration/pathology , Spinal Cord/immunology , Spinal Cord/metabolism , Spinal Cord/pathology , alpha-Synuclein/immunology
SELECTION OF CITATIONS
SEARCH DETAIL