Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36321886

ABSTRACT

SUMMARY: The Metagenomic Intra-Species Diversity Analysis System (MIDAS) is a scalable metagenomic pipeline that identifies single nucleotide variants (SNVs) and gene copy number variants in microbial populations. Here, we present MIDAS2, which addresses the computational challenges presented by increasingly large reference genome databases, while adding functionality for building custom databases and leveraging paired-end reads to improve SNV accuracy. This fast and scalable reengineering of the MIDAS pipeline enables thousands of metagenomic samples to be efficiently genotyped. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/czbiohub/MIDAS2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Metagenome , Software , Metagenomics , Genotype , Databases, Factual
2.
Curr Protoc ; 2(12): e604, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36469554

ABSTRACT

The Metagenomic Intra-Species Diversity Analysis System 2 (MIDAS2) is a scalable pipeline that identifies single nucleotide variants and gene copy number variants in metagenomes using comprehensive reference databases built from public microbial genome collections (metagenotyping). MIDAS2 is the first metagenotyping tool with functionality to control metagenomic read mapping filters and to customize the reference database to the microbial community, features that improve the precision and recall of detected variants. In this article we present four basic protocols for the most common use cases of MIDAS2, along with supporting protocols for installation and use. In addition, we provide in-depth guidance on adjusting command line parameters, editing the reference database, optimizing hardware utilization, and understanding the metagenotyping results. All the steps of metagenotyping, from raw sequencing reads to population genetic analysis, are demonstrated with example data in two downloadable sequencing libraries of single-end metagenomic reads representing a mixture of multiple bacterial species. This set of protocols empowers users to accurately genotype hundreds of species in thousands of samples, providing rich genetic data for studying the evolution and strain-level ecology of microbial communities. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Species prescreening Basic Protocol 2: Download MIDAS reference database Basic Protocol 3: Population single nucleotide variant calling Basic Protocol 4: Pan-genome copy number variant calling Support Protocol 1: Installing MIDAS2 Support Protocol 2: Command line inputs Support Protocol 3: Metagenotyping with a custom collection of genomes Support Protocol 4: Metagenotyping with advanced parameters.


Subject(s)
Metagenome , Microbiota , Metagenome/genetics , Genotype , Alleles , Microbiota/genetics , Nucleotides
3.
ACS Chem Biol ; 15(8): 2137-2153, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32786289

ABSTRACT

Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.


Subject(s)
Saccharomyces cerevisiae/drug effects , alpha-Synuclein/toxicity , Amino Acid Sequence , Humans , Mutation , Parkinson Disease/metabolism , Protein Conformation , Saccharomyces cerevisiae/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL