Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
BMC Pediatr ; 22(1): 491, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986306

ABSTRACT

BACKGROUND: Children's exposure to toxic stress (e.g., parental depression, violence, poverty) predicts developmental and physical health problems resulting in health care system burden. Supporting parents to develop parenting skills can buffer the effects of toxic stress, leading to healthier outcomes for those children. Parenting interventions that focus on promoting parental reflective function (RF), i.e., parents' capacity for insight into their child's and their own thoughts, feelings, and mental states, may understand help reduce societal health inequities stemming from childhood stress exposures. The Attachment and Child Health (ATTACHTM) program has been implemented and tested in seven rapid-cycling pilot studies (n = 64) and found to significantly improve parents' RF in the domains of attachment, parenting quality, immune function, and children's cognitive and motor development. The purpose of the study is to conduct an effectiveness-implementation hybrid (EIH) Type II study of ATTACHTM to assess its impacts in naturalistic, real-world settings delivered by community agencies rather than researchers under more controlled conditions. METHODS: The study is comprised of a quantitative pre/post-test quasi-experimental evaluation of the ATTACHTM program, and a qualitative examination of implementation feasibility using thematic analysis via Normalization Process Theory (NPT). We will work with 100 families and their children (birth to 36-months-old). Study outcomes include: the Parent Child Interaction Teaching Scale to assess parent-child interaction; the Parental Reflective Function and Reflective Function Questionnaires to assess RF; and the Ages and Stages Questionnaire - 3rd edition to examine child development, all administered pre-, post-, and 3-month-delayed post-assessment. Blood samples will be collected pre- and post- assessment to assess immune biomarkers. Further, we will conduct one-on-one interviews with study participants, health and social service providers, and administrators (total n = 60) from each collaborating agency, using NPT to explore perceptions and experiences of intervention uptake, the fidelity assessment tool and e-learning training as well as the benefits, barriers, and challenges to ATTACHTM implementation. DISCUSSION: The proposed study will assess effectiveness and implementation to help understand the delivery of ATTACHTM in community agencies. TRIAL REGISTRATION: Name of registry: https://clinicaltrials.gov/. REGISTRATION NUMBER: NCT04853888 . Date of registration: April 22, 2021.


Subject(s)
Child Health , Parenting , Child Rearing , Child, Preschool , Humans , Infant , Infant, Newborn , Parent-Child Relations , Parenting/psychology , Parents/psychology
2.
Alcohol Clin Exp Res ; 43(3): 439-452, 2019 03.
Article in English | MEDLINE | ID: mdl-30589433

ABSTRACT

BACKGROUND: Fetal alcohol spectrum disorders (FASD) have a strong genetic component although the genes that underlie this are only beginning to be elucidated. In the present study, one of the most common phenotypes of FASD, cell death within the early developing neural tube, was examined across a genetic reference population in a reverse genetics paradigm with the goal of identifying genetic loci that could influence ethanol (EtOH)-induced apoptosis in the early developing neural tube. METHODS: BXD recombinant inbred mice as well as the parental strains were used to evaluate genetic differences in EtOH-induced cell death after exposure on embryonic day 9.5. Dams were given either 5.8 g/kg EtOH or isocaloric maltose-dextrin in 2 doses via intragastric gavage. Embryos were collected 7 hours after the initial exposure and cell death evaluated via TUNEL staining in the brainstem and forebrain. Genetic loci were evaluated using quantitative trait locus (QTL) analysis at GeneNetwork.org. RESULTS: Significant strain differences were observed in the levels of EtOH-induced cell death that were due to genetic effects and not confounding variables such as differences in developmental maturity or cell death kinetics. Comparisons between the 2 regions of the developing neural tube showed little genetic correlation with the QTL maps exhibiting no overlap. Significant QTLs were found on murine mid-chromosome 4 and mid-chromosome 14 only in the brainstem. Within these chromosomal loci, a number of interesting candidate genes were identified that could mediate this differential sensitivity including Nfia (nuclear factor I/A) and Otx2 (orthodenticle homeobox 2). CONCLUSIONS: These studies demonstrate that the levels of EtOH-induced cell death occur in strain- and region-dependent manners. Novel QTLs on mouse Chr4 and Chr14 were identified that modulate the differential sensitivity to EtOH-induced apoptosis in the embryonic brainstem. The genes underlying these QTLs could identify novel molecular pathways that are critical in this phenotype.


Subject(s)
Apoptosis/drug effects , Apoptosis/genetics , Ethanol/adverse effects , Neural Tube/drug effects , Animals , Brain Stem/drug effects , Ethanol/blood , Female , Mice , Mice, Inbred Strains , Pregnancy/drug effects , Prosencephalon/drug effects , Quantitative Trait Loci , Species Specificity
3.
BMC Genomics ; 19(1): 39, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29325522

ABSTRACT

CORRECTION: The authors of the original article [1] would like to recognize the critical contribution of core members of the FANTOM5 Consortium, who played the critical role of HeliScopeCAGE sequencing experiments, quality control of tag reads and processing of the raw sequencing data.

4.
Cerebellum ; 17(3): 308-325, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29307116

ABSTRACT

Laser-capture microdissection was used to isolate external germinal layer tissue from three developmental periods of mouse cerebellar development: embryonic days 13, 15, and 18. The cerebellar granule cell-enriched mRNA library was generated with next-generation sequencing using the Helicos technology. Our objective was to discover transcriptional regulators that could be important for the development of cerebellar granule cells-the most numerous neuron in the central nervous system. Through differential expression analysis, we have identified 82 differentially expressed transcription factors (TFs) from a total of 1311 differentially expressed genes. In addition, with TF-binding sequence analysis, we have identified 46 TF candidates that could be key regulators responsible for the variation in the granule cell transcriptome between developmental stages. Altogether, we identified 125 potential TFs (82 from differential expression analysis, 46 from motif analysis with 3 overlaps in the two sets). From this gene set, 37 TFs are considered novel due to the lack of previous knowledge about their roles in cerebellar development. The results from transcriptome-wide analyses were validated with existing online databases, qRT-PCR, and in situ hybridization. This study provides an initial insight into the TFs of cerebellar granule cells that might be important for development and provide valuable information for further functional studies on these transcriptional regulators.


Subject(s)
Cerebellum/embryology , Cerebellum/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Animals , Computer Simulation , Gene Expression Profiling , Gene Expression Regulation, Developmental , In Situ Hybridization , Laser Capture Microdissection , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Transcriptome
5.
J Neurosci ; 36(35): 9057-69, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27581449

ABSTRACT

UNLABELLED: Pax6 is a prominent gene in brain development. The deletion of Pax6 results in devastated development of eye, olfactory bulb, and cortex. However, it has been reported that the Pax6-null Sey cerebellum only has minor defects involving granule cells despite Pax6 being expressed throughout cerebellar development. The present work has uncovered a requirement of Pax6 in the development of all rhombic lip (RL) lineages. A significant downregulation of Tbr1 and Tbr2 expression is found in the Sey cerebellum, these are cell-specific markers of cerebellar nuclear (CN) neurons and unipolar brush cells (UBCs), respectively. The examination of Tbr1 and Lmx1a immunolabeling and Nissl staining confirmed the loss of CN neurons from the Sey cerebellum. CN neuron progenitors are produced in the mutant but there is an enhanced death of these neurons as shown by increased presence of caspase-3-positive cells. These data indicate that Pax6 regulates the survival of CN neuron progenitors. Furthermore, the analysis of experimental mouse chimeras suggests a cell-extrinsic role of Pax6 in CN neuron survival. For UBCs, using Tbr2 immunolabeling, these cells are significantly reduced in the Sey cerebellum. The loss of UBCs in the mutant is due partly to cell death in the RL and also to the reduced production of progenitors from the RL. These results demonstrate a critical role for Pax6 in regulating the generation and survival of UBCs. This and previous work from our laboratory demonstrate a seminal role of Pax6 in the development of all cerebellar glutamatergic neurons. SIGNIFICANCE STATEMENT: Pax6 is a key molecule in development. Pax6 is best known as the master control gene in eye development with mutations causing aniridia in humans. Pax6 also plays important developmental roles in the cortex and olfactory bulb. During cerebellar development, Pax6 is robustly expressed in the germinal zone of all glutamatergic neurons [cerebellar nuclear (CN) neurons, granule cells, and unipolar brush cells (UBCs)]. Past work has not found abnormalities in the CN and UBC populations. Our study reveals that the Pax6-null mutation dramatically affects these cells and identifies Pax6 as a key regulator of cell survival in CN neurons and of cell production in UBCs. The present study shows how Pax6 is key to the development of glutamatergic cells in the cerebellum.


Subject(s)
Cerebellum/embryology , Cerebellum/metabolism , Gene Expression Regulation, Developmental/genetics , PAX6 Transcription Factor/metabolism , Age Factors , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bromodeoxyuridine/metabolism , Caspase 3/metabolism , Cell Count , Cerebellum/cytology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Glutamic Acid/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Mutant Strains , Microscopy, Confocal , PAX6 Transcription Factor/genetics , Repressor Proteins , T-Box Domain Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
6.
BMC Genomics ; 18(1): 461, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28610618

ABSTRACT

BACKGROUND: Alternative transcription start site (TSS) usage plays important roles in transcriptional control of mammalian gene expression. The growing interest in alternative TSSs and their role in genome diversification spawned many single-gene studies on differential usages of tissue-specific or temporal-specific alternative TSSs. However, exploration of the switching usage of alternative TSS usage on a genomic level, especially in the central nervous system, is largely lacking. RESULTS: In this study, We have prepared a unique set of time-course data for the developing cerebellum, as part of the FANTOM5 consortium ( http://fantom.gsc.riken.jp/5/ ) that uses their innovative capturing of 5' ends of all transcripts followed by Helicos next generation sequencing. We analyzed the usage of all transcription start sites (TSSs) at each time point during cerebellar development that provided information on multiple RNA isoforms that emerged from the same gene. We developed a mathematical method that systematically compares the expression of different TSSs of a gene to identify temporal crossover and non-crossover switching events. We identified 48,489 novel TSS switching events in 5433 genes during cerebellar development. This includes 9767 crossover TSS switching events in 1511 genes, where the dominant TSS shifts over time. CONCLUSIONS: We observed a relatively high prevalence of TSS switching in cerebellar development where the resulting temporally-specific gene transcripts and protein products can play important regulatory and functional roles.


Subject(s)
Cerebellum/growth & development , Transcription Initiation Site , Animals , Cerebellum/metabolism , Female , Gene Expression Profiling , Gene Ontology , Male , Mice , Mice, Inbred C57BL
7.
Cerebellum ; 16(1): 40-54, 2017 02.
Article in English | MEDLINE | ID: mdl-26837618

ABSTRACT

Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders characterized by impaired and disordered language, decreased social interactions, stereotyped and repetitive behaviors, and impaired fine and gross motor skills. It has been well established that cerebellar abnormalities are one of the most common structural changes seen in the brains of people diagnosed with autism. Common cerebellar pathology observed in autistic individuals includes variable loss of cerebellar Purkinje cells (PCs) and increased numbers of reactive neuroglia in the cerebellum and cortical brain regions. The Lc/+ mutant mouse loses 100 % of cerebellar PCs during the first few weeks of life and provided a valuable model to study the effects of developmental PC loss on underlying structural and functional changes in cerebellar neural circuits. Lurcher (Lc) chimeric mice were also generated to explore the link between variable cerebellar pathology and subsequent changes in the structure and function of cerebellar neurons and neuroglia. Chimeras with the most severe cerebellar pathology (as quantified by cerebellar PC counts) had the largest changes in cFos expression (an indirect reporter of neural activity) in cerebellar granule cells (GCs) and cerebellar nucleus (CN) neurons. In addition, Lc chimeras with the fewest PCs also had numerous reactive microglia and Bergmann glia located in the cerebellar cortex. Structural and functional abnormalities observed in the cerebella of Lc chimeras appeared to be along a continuum, with the degree of pathology related to the number of PCs in individual chimeras.


Subject(s)
Cerebellum/pathology , Neuroglia/pathology , Neurons/pathology , Animals , Autism Spectrum Disorder , Cell Death , Cerebellum/metabolism , Chimera , Female , Gene Expression , Gliosis/metabolism , Gliosis/pathology , Immunohistochemistry , Male , Mice, Neurologic Mutants , Motor Activity/physiology , Neural Pathways/metabolism , Neural Pathways/pathology , Neuroglia/metabolism , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Rotarod Performance Test , Severity of Illness Index
8.
Dev Biol ; 397(1): 18-30, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25446528

ABSTRACT

The mammalian CNS is one of the most complex biological systems to understand at the molecular level. The temporal information from time series transcriptome analysis can serve as a potent source of associative information between developmental processes and regulatory genes. Here, we introduce a new transcriptome database called, Cerebellar Gene Regulation in Time and Space (CbGRiTS). This dataset is populated with transcriptome data across embryonic and postnatal development from two standard mouse strains, C57BL/6J and DBA/2J, several recombinant inbred lines and cerebellar mutant strains. Users can evaluate expression profiles across cerebellar development in a deep time series with graphical interfaces for data exploration and link-out to anatomical expression databases. We present three analytical approaches that take advantage of specific aspects of the time series for transcriptome analysis. We demonstrate the use of CbGRiTS dataset as a community resource to explore patterns of gene expression and develop hypotheses concerning gene regulatory networks in brain development.


Subject(s)
Cerebellum/embryology , Cerebellum/physiology , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Algorithms , Animals , Cluster Analysis , Computational Biology , Databases, Genetic , Female , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Oligonucleotide Array Sequence Analysis , Software , Species Specificity , Time Factors , Transcriptome
9.
J Neurosci ; 34(37): 12527-37, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209290

ABSTRACT

Math1 is the defining molecule of the cerebellar rhombic lip and Pax6 is downstream in the Math1 pathway. In the present study, we discover that Wntless (Wls) is a novel molecular marker of the cells in the interior face of the rhombic lip throughout normal mouse cerebellar development. Wls expression is found complementary to the expression of Math1 and Pax6, which are localized to the exterior face of the rhombic lip. To determine the interaction between these molecules, we examine the loss-of-Math1 or loss-of-Pax6 in the cerebellum, i.e., the Math1-null and Pax6-null (Sey) mutant cerebella. The presence of Wls-positive cells in the Math1-null rhombic lip indicates that Wls expression is independent of Math1. In the Sey mutant cerebellum, there is an expansion of Wls-expressing cells into regions that are normally colonized by Pax6-expressing cells. The ectopic expression of Wls in the Pax6-null cerebellum suggests a negative interaction between Wls-expressing cells and Pax6-positive cells. These findings suggest that the rhombic lip is dynamically patterned by the expression of Wls, Math1, and Pax6. We also examine five rhombic lip cell markers (Wls, Math1, Pax6, Lmx1a, and Tbr2) to identify four molecularly distinct compartments in the rhombic lip during cerebellar development. The existence of spatial compartmentation in the rhombic lip and the interplay between Wls, Math1, and Pax6 in the rhombic lip provides novel views of early cerebellar development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning/physiology , Cerebellum/embryology , Cerebellum/metabolism , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Paired Box Transcription Factors/metabolism , Receptors, G-Protein-Coupled/metabolism , Repressor Proteins/metabolism , Animals , Gene Expression Regulation, Developmental/physiology , Mice , Mice, Knockout , Mice, Transgenic , PAX6 Transcription Factor , Tissue Distribution
11.
BMC Genomics ; 15: 1177, 2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25539566

ABSTRACT

BACKGROUND: Mutations in three functionally diverse genes cause Rett Syndrome. Although the functions of Forkhead box G1 (FOXG1), Methyl CpG binding protein 2 (MECP2) and Cyclin-dependent kinase-like 5 (CDKL5) have been studied individually, not much is known about their relation to each other with respect to expression levels and regulatory regions. Here we analyzed data from hundreds of mouse and human samples included in the FANTOM5 project, to identify transcript initiation sites, expression levels, expression correlations and regulatory regions of the three genes. RESULTS: Our investigations reveal the predominantly used transcription start sites (TSSs) for each gene including novel transcription start sites for FOXG1. We show that FOXG1 expression is poorly correlated with the expression of MECP2 and CDKL5. We identify promoter shapes for each TSS, the predicted location of enhancers for each gene and the common transcription factors likely to regulate the three genes. Our data imply Polycomb Repressive Complex 2 (PRC2) mediated silencing of Foxg1 in cerebellum. CONCLUSIONS: Our analyses provide a comprehensive picture of the regulatory regions of the three genes involved in Rett Syndrome.


Subject(s)
Gene Expression Profiling , Promoter Regions, Genetic/genetics , Rett Syndrome/genetics , Animals , Brain/metabolism , Brain/pathology , Cell Line, Tumor , CpG Islands/genetics , Forkhead Transcription Factors/genetics , Genomics , Histones/genetics , Humans , Methyl-CpG-Binding Protein 2/genetics , Mice , Nerve Tissue Proteins/genetics , Neurons/metabolism , Protein Serine-Threonine Kinases/genetics , Rett Syndrome/pathology , TATA Box/genetics , Transcription Initiation Site
12.
Mol Vis ; 20: 215-30, 2014.
Article in English | MEDLINE | ID: mdl-24623965

ABSTRACT

PURPOSE: Persistent hyperplastic primary vitreous (PHPV) represents a developmental eye disease known to have diverse manifestations ranging from a trivial remnant of hyaloid vessels to a dense fibrovascular mass causing lens opacity and retinal detachment. PHPV can be modeled in mice lacking individual genes, but certain features of such models differ from the clinical realm. For example, mice lacking the Arf gene have uniformly severe disease with consistent autosomal recessive disease penetrance. We tested whether the graded somatic loss of Arf in a subset of cells in chimeric mice mimics the range of disease in a non-heritable manner. METHODS: Wild type ↔ Arf(-/-) mouse chimeras were generated by morulae fusion, and when the mice were 10 weeks old, fundoscopic, slit-lamp, and histological evaluations were performed. The relative fraction of cells of the Arf(-/-) lineage was assessed with visual, molecular genetic, and histological analysis. Objective quantification of various aspects of the phenotype was correlated with the genotype. RESULTS: Sixteen chimeras were generated and shown to have low, medium, and high contributions of Arf(-/-) cells to tail DNA, the cornea, and the retinal pigment epithelium (RPE), with excellent correlation between chimerism in the tail DNA and the RPE. Phenotypic differences (coat color and severity of eye disease) were evident, objectively quantified, and found to correlate with the contribution of Arf(-/-) cells to the RPE and tail-derived DNA, but not the cornea. CONCLUSIONS: Generating animals composed of different numbers of Arf(-/-) cells mimicked the range of disease severity observed in patients with PHPV. This establishes the potential for full manifestations of PHPV to be caused by somatic mutations of a single gene during development.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p19/genetics , Gene Deletion , Mosaicism , Persistent Hyperplastic Primary Vitreous/genetics , Persistent Hyperplastic Primary Vitreous/pathology , Animals , Cell Lineage , Chimera , Cyclin-Dependent Kinase Inhibitor p19/deficiency , Cyclin-Dependent Kinase Inhibitor p19/metabolism , DNA/metabolism , Mice , Mice, Inbred C57BL , Ophthalmoscopy , Phenotype , Pigmentation , Retinal Pigment Epithelium/pathology
13.
Cerebellum ; 13(3): 346-53, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24307139

ABSTRACT

Neural abnormalities commonly associated with autism spectrum disorders include prefrontal cortex (PFC) dysfunction and cerebellar pathology in the form of Purkinje cell loss and cerebellar hypoplasia. It has been reported that loss of cerebellar Purkinje cells results in aberrant dopamine neurotransmission in the PFC which occurs via dysregulation of multisynaptic efferents from the cerebellum to the PFC. Using a mouse model, we investigated the possibility that developmental cerebellar Purkinje cell loss could disrupt glutamatergic cerebellar projections to the PFC that ultimately modulate DA release. We measured glutamate release evoked by local electrical stimulation using fixed-potential amperometry in combination with glutamate selective enzyme-based recording probes in urethane-anesthetized Lurcher mutant and wildtype mice. Target sites included the mediodorsal and ventrolateral thalamic nuclei, reticulotegmental nuclei, pedunculopontine nuclei, and ventral tegmental area. With the exception of the ventral tegmental area, the results indicated that in comparison to wildtype mice, evoked glutamate release was reduced in Lurcher mutants by between 9 and 72% at all stimulated sites. These results are consistent with the notion that developmental loss of cerebellar Purkinje cells drives reductions in evoked glutamate release in cerebellar efferent pathways that ultimately influence PFC dopamine release. Possible mechanisms whereby reductions in glutamate release could occur are discussed.


Subject(s)
Brain Diseases/metabolism , Child Development Disorders, Pervasive/metabolism , Glutamic Acid/metabolism , Prefrontal Cortex/physiopathology , Purkinje Cells/metabolism , Animals , Brain Diseases/etiology , Dopamine/metabolism , Male , Mice , Synaptic Transmission/physiology
14.
Front Mol Neurosci ; 17: 1356544, 2024.
Article in English | MEDLINE | ID: mdl-38742226

ABSTRACT

In the early cerebellar primordium, there are two progenitor zones, the ventricular zone (VZ) residing atop the IVth ventricle and the rhombic lip (RL) at the lateral edges of the developing cerebellum. These zones give rise to the several cell types that form the GABAergic and glutamatergic populations of the adult cerebellum, respectively. Recently, an understanding of the molecular compartmentation of these zones has emerged. To add to this knowledge base, we report on the Msx genes, a family of three transcription factors, that are expressed downstream of Bone Morphogenetic Protein (BMP) signaling in these zones. Using fluorescent RNA in situ hybridization, we have characterized the Msx (Msh Homeobox) genes and demonstrated that their spatiotemporal pattern segregates specific regions within the progenitor zones. Msx1 and Msx2 are compartmentalized within the rhombic lip (RL), while Msx3 is localized within the ventricular zone (VZ). The relationship of the Msx genes with an early marker of the glutamatergic lineage, Atoh1, was examined in Atoh1-null mice and it was found that the expression of Msx genes persisted. Importantly, the spatial expression of Msx1 and Msx3 altered in response to the elimination of Atoh1. These results point to the Msx genes as novel early markers of cerebellar progenitor zones and more importantly to an updated view of the molecular parcellation of the RL with respect to the canonical marker of the RL, Atoh1.

15.
J Neurosci ; 32(35): 12093-101, 2012 Aug 29.
Article in English | MEDLINE | ID: mdl-22933793

ABSTRACT

The excitotoxic effects of kainic acid (KA) in the mouse hippocampus is strain dependent. Following KA administration, the large majority of hippocampal pyramidal cells die in the FVB/N (FVB) mouse, while the pyramidal cells of the C57BL/6 (B6) strain are largely spared. We generated aggregation chimeras between the sensitive FVB and the resistant B6 strains to investigate whether intrinsic or extrinsic features of a neuron confer cell vulnerability or resistance to KA. The constitutive expression of transgenic green fluorescence protein (GFP) or ß-galactosidase expressed from the ROSA26 locus was used to mark cells in FVB or B6 mice, respectively. These makers enable the identification of cells from each parental genotype while TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling)-staining labeled dying cells. The analysis of the percentage of dying cells in FVB-GFP ↔ B6-ROSA chimeras yielded an intriguing mix of both intrinsic and extrinsic factors in the readout of cell phenotype. Thus, normally resistant B6-ROSA pyramidal neurons demonstrated an increasing sensitivity to KA, in a linear fashion, when the percentage of FVB-GFP cells was increased, either across chimeras or in different regions of the same chimera. However, the death of B6-ROSA pyramidal cells never exceeded ∼70% of the total amount of B6 neurons regardless of the amount of FVB cells in the chimeric hippocampus. In a similar manner, FVB-GFP cells show lower amounts of cell death in chimeras that are colonized by B6-ROSA cells, but again, are never fully rescued. These data indicate that both intrinsic and extrinsic factors modulate the sensitivity of hippocampal pyramidal cells to kainic acid.


Subject(s)
Apoptosis/genetics , Kainic Acid/toxicity , Nerve Degeneration/pathology , Pyramidal Cells/pathology , Pyramidal Cells/physiology , Radiation Chimera/genetics , Animals , Female , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration/chemically induced , Nerve Degeneration/genetics , Pregnancy , Pyramidal Cells/drug effects
16.
Cerebellum ; 12(4): 534-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23436026

ABSTRACT

Histone deacetylases (HDACs) are epigenetic regulatory proteins that repress gene transcription by changing DNA conformation. The regulation of gene expression through histone deacetylation is an important mechanism for the development of the central nervous system. Although the disruption of the balance in epigenetic gene regulation has been implicated in many CNS developmental abnormalities and diseases, the expression pattern of HDACs in various cell types in the brain during its maturation process has had limited exploration. Therefore, in this study, we investigate the cell type-specific and developmental stage-specific expression pattern of HDAC1 and HDAC2 in the mouse cerebellum. Our experimental results show that the cerebellar progenitors and glial cells express high levels of HDAC1 and low levels of HDAC2. On the other hand, the post-mitotic migrating neuronal cells of the cerebellar cortex show strong HDAC2 and weak HDAC1 expressions. In more differentiated neuronal cells, including Purkinje cells, granule cells, unipolar brush cells, and GABAergic interneurons, we found a consistent expression pattern, high levels of HDAC2 and low levels of HDAC1. Therefore, our data provide support for the potential important roles of HDAC1 in cell proliferation and HDAC2 in migration and differentiation.


Subject(s)
Cerebellar Cortex/enzymology , Gene Expression Regulation, Enzymologic , Histone Deacetylase 1/biosynthesis , Histone Deacetylase 2/biosynthesis , Animals , Animals, Newborn , Astrocytes/enzymology , Cell Differentiation/physiology , Cerebellar Cortex/embryology , Cerebellar Cortex/growth & development , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neuroglia/enzymology , Neurons/enzymology , Stem Cells/enzymology
17.
Cerebellum ; 12(4): 547-56, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23436049

ABSTRACT

Imaging, clinical, and pre-clinical studies have provided ample evidence for a cerebellar involvement in cognitive brain function including cognitive brain disorders, such as autism and schizophrenia. We previously reported that cerebellar activity modulates dopamine release in the mouse medial prefrontal cortex (mPFC) via two distinct pathways: (1) cerebellum to mPFC via dopaminergic projections from the ventral tegmental area (VTA) and (2) cerebellum to mPFC via glutamatergic projections from the mediodorsal and ventrolateral thalamus (ThN md and vl). The present study compared functional adaptations of cerebello-cortical circuitry following developmental cerebellar pathology in a mouse model of developmental loss of Purkinje cells (Lurcher) and a mouse model of fragile X syndrome (Fmr1 KO mice). Fixed potential amperometry was used to measure mPFC dopamine release in response to cerebellar electrical stimulation. Mutant mice of both strains showed an attenuation in cerebellar-evoked mPFC dopamine release compared to respective wildtype mice. This was accompanied by a functional reorganization of the VTA and thalamic pathways mediating cerebellar modulation of mPFC dopamine release. Inactivation of the VTA pathway by intra-VTA lidocaine or kynurenate infusions decreased dopamine release by 50 % in wildtype and 20-30 % in mutant mice of both strains. Intra-ThN vl infusions of either drug decreased dopamine release by 15 % in wildtype and 40 % in mutant mice of both strains, while dopamine release remained relatively unchanged following intra-ThN md drug infusions. These results indicate a shift in strength towards the thalamic vl projection, away from the VTA. Thus, cerebellar neuropathologies associated with autism spectrum disorders may cause a reduction in cerebellar modulation of mPFC dopamine release that is related to a reorganization of the mediating neuronal pathways.


Subject(s)
Cerebellum/metabolism , Child Development Disorders, Pervasive/metabolism , Disease Models, Animal , Dopamine/metabolism , Nerve Net/metabolism , Neuronal Plasticity/physiology , Prefrontal Cortex/metabolism , Animals , Cerebellum/drug effects , Child Development Disorders, Pervasive/genetics , Infusions, Intraventricular , Kynurenic Acid/administration & dosage , Lidocaine/administration & dosage , Male , Mice , Mice, 129 Strain , Mice, Inbred CBA , Mice, Knockout , Mice, Neurologic Mutants , Nerve Net/drug effects , Neuronal Plasticity/drug effects , Prefrontal Cortex/drug effects
18.
Alcohol Clin Exp Res ; 37(1): 170-83, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23289978

ABSTRACT

BACKGROUND: Alcohol-related responses are under strong genetic regulation. A wealth of alcohol-related data from recombinant inbred (RI) mouse strains enables genetic correlation and mapping of these traits. Previous studies using RI strains have identified numerous chromosomal locations that underlie differential alcohol sensitivity, although the regions identified are typically large. One means to improve power and precision for genetic analysis is to use a larger genetic reference population. The expanded panel of BXD RI mice was used to identify quantitative trait loci (QTLs) associated with sensitivity to locomotor stimulatory and motor incoordinating effects of alcohol. The goals of this study were to determine whether previously reported QTLs were replicated and refined and to determine whether novel QTLs would be identified. METHODS: Following an i.p. dose of 2.25 g/kg of ethanol (EtOH) or saline control, locomotor activation was assessed using an activity chamber and motor incoordination was assessed using the accelerating rotarod. Male and female BXD mice from over 55 strains were tested. Two treatment paradigms were utilized to evaluate the effects of EtOH versus saline treatment-order. RESULTS: Activity chamber measures showed significant differences in strain, sex, and treatment-order whereas rotarod measures showed significant differences in strain and treatment-order. Significant QTLs for various measures of EtOH-induced locomotor activation were identified on chromosomes 2 and 5 that narrowed QTL regions previously identified from 19 to < 2 Mb. Further, a novel significant QTL for EtOH-induced motor incoordination on chromosome 7 was identified. CONCLUSIONS: Using the expanded RI BXD panel, along with a high precision marker map, several novel QTLs were found and several previously identified QTL regions were confirmed and narrowed. The isogenic nature of the population facilitated detection of treatment-order and sex-specific differences. Smaller QTL regions reduced the number of positional candidates thereby increasing the efficiency with which polymorphisms underlying the QTL will be identified.


Subject(s)
Alcohol-Related Disorders/genetics , Ethanol/adverse effects , Motor Activity/drug effects , Quantitative Trait Loci , Animals , Central Nervous System Depressants/adverse effects , Central Nervous System Depressants/blood , Ethanol/blood , Female , Male , Mice , Mice, Inbred Strains , Motor Activity/genetics , Rotarod Performance Test
19.
Front Neurosci ; 17: 1203597, 2023.
Article in English | MEDLINE | ID: mdl-37790585

ABSTRACT

Introduction: Fetal alcohol spectrum disorders (FASD) are the leading preventable cause of intellectual disability, providing the impetus for evaluating various potential treatments to ameliorate ethanol's teratogenic effects, particularly in the nervous system. One treatment is the dietary supplement choline which has been shown to mitigate at least some of ethanol's teratogenic effects. The present study was designed to investigate the effects of genetics on choline's efficacy in ameliorating cell death in the developing neural tube. Previously, we examined BXD recombinant inbred mice, and their parental C57BL/6 J (B6) and DBA/2 J strains, and identified strains that were sensitive to ethanol's teratogenic actions. Thus, we used these strains to identify response to choline treatment. Materials and methods: Timed pregnant mice from 4 strains (B6, BXD51, BXD73, BXD2) were given either ethanol or isocaloric maltose-dextrin (5.8 g/kg in two administrations separated by 2 h) with choline at one of 3 doses: 0, 100 or 250 mg/kg. Subjects were exposed via intragastric gavage on embryonic day 9 and embryos were collected 7 h after the initial ethanol administrations. Cell death was analyzed using TUNEL staining in the developing forebrain and brainstem. Results: Choline ameliorated the ethanol-induced cell death across all 4 strains without causing enhanced cell death in control mice. Choline was effective in both the developing telencephalon and in the brainstem. Both doses diminished cell death, with some differences across strains and brain regions, although the 100 mg/kg dose was most consistent in mitigating ethanol-related cell death. Comparisons across strains showed that there was an effect of strain, particularly in the forebrain at the higher dose. Discussion: These results show that choline is effective in ameliorating ethanol-induced cell death at this early stage of nervous system development. However, there were some strain differences in its efficacy, especially at the high dose, providing further evidence of the importance of genetics in influencing the ability of choline to protect against prenatal alcohol exposure.

20.
J Neurosci ; 31(41): 14794-9, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21994396

ABSTRACT

Huntington's disease (HD), caused by an expanded triplet repeat in the huntingtin (Htt) gene, results in extensive neuropathology, but study of the Htt gene in CNS development through gene knockout is problematic as the knockout leads to embryonic lethality in mice. Here, we report that the knockdown of Htt expression in neuroepithelial cells of neocortex results in disturbed cell migration, reduced proliferation, and increased cell death that is relatively specific to early neural development. In the cerebellum, however, Htt knockdown results in cell death but not perturbed migration. The cell death phenotype in cortex can be partially reversed with co-knockdown of Casp9, indicating that mitochondria-mediated cell apoptotic processes are involved in the neuronal death. The timing of knockdown during early development is also an important variable. These results indicate a spatial and temporal requirement for Htt expression in neural development. Although it is uncertain whether the loss of wild-type huntingtin function contributes to pathogenesis in Huntington's disease, these results clearly contraindicate the use of nonspecific knockdown of Htt as a therapeutic measure in HD, particularly in utero.


Subject(s)
Brain , Cell Movement/genetics , Gene Expression Regulation, Developmental/physiology , Nerve Tissue Proteins/metabolism , Neurons/physiology , Nuclear Proteins/metabolism , Animals , Brain/cytology , Brain/embryology , Brain/metabolism , Bromodeoxyuridine/metabolism , Caspase 3/metabolism , Caspase 9/genetics , Caspase 9/metabolism , Cell Survival , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Huntingtin Protein , Male , Mice , Mice, Inbred ICR , Mice, Transgenic , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Pregnancy , RNA, Small Interfering/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL