Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters

Publication year range
1.
Am J Physiol Cell Physiol ; 326(3): C712-C723, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223932

ABSTRACT

Fibrosis, the morphologic end-result of a plethora of chronic conditions and the scorch for organ function, has been thoroughly investigated. One aspect of its development and progression, namely the permissive role of vascular endothelium, has been overshadowed by studies into (myo)fibroblasts and TGF-ß; thus, it is the subject of the present review. It has been established that tensile forces of the extracellular matrix acting on cells are a prerequisite for mechanochemical coupling, leading to liberation of TGF-ß and formation of myofibroblasts. Increased tensile forces are prompted by elevated vascular permeability in response to diverse stressors, resulting in the exudation of fibronectin, fibrinogen/fibrin, and other proteins, all stiffening the extracellular matrix. These processes lead to the development of endothelial cells dysfunction, endothelial-to-mesenchymal transition, premature senescence of endothelial cells, perturbation of blood flow, and gradual obliteration of microvasculature, leaving behind "string" vessels. The resulting microvascular rarefaction is not only a constant companion of fibrosis but also an adjunct mechanism of its progression. The deepening knowledge of the above chain of pathogenetic events involving endothelial cells, namely increased permeability-stiffening of the matrix-endothelial dysfunction-microvascular rarefaction-tissue fibrosis, may provide a roadmap for therapeutic interventions deemed to curtail and reverse fibrosis.


Subject(s)
Endothelium, Vascular , Microvascular Rarefaction , Humans , Endothelium, Vascular/metabolism , Endothelial Cells/metabolism , Microvascular Rarefaction/metabolism , Microvascular Rarefaction/pathology , Kidney/metabolism , Fibrosis , Transforming Growth Factor beta/metabolism
2.
Am J Pathol ; 193(4): 474-492, 2023 04.
Article in English | MEDLINE | ID: mdl-36669683

ABSTRACT

The outer layer of endothelial cells (ECs), consisting of the endothelial glycocalyx (eGC) and the cortex (CTX), provides a protective barrier against vascular diseases. Structural and functional impairments of their mechanical properties are recognized as hallmarks of endothelial dysfunction and can lead to cardiovascular events, such as acute myocardial infarction (AMI). This study investigated the effects of AMI on endothelial nanomechanics and function and the use of exogenous recombinant syndecan-1 (rSyn-1), a major component of the eGC, as recovering agent. ECs were exposed in vitro to serum samples collected from patients with AMI. In addition, in situ ECs of ex vivo aorta preparations derived from a mouse model for AMI were employed. Effects were quantified by using atomic force microscopy-based nanoindentation measurements, fluorescence staining, and histologic examination of the mouse hearts. AMI serum samples damaged eGC/CTX and augmented monocyte adhesion to the endothelial surface. In particular, the anaphylatoxins C3a and C5a played an important role in these processes. The impairment of endothelial function could be prevented by rSyn-1 treatment. In the mouse model of myocardial infarction, pretreatment with rSyn-1 alleviated eGC/CTX deterioration and reduced cardiomyocyte damage in histologic analyses. However, echocardiographic measurements did not indicate a functional benefit. These results provide new insights into the underlying mechanisms of AMI-induced endothelial dysfunction and perspectives for future studies on the benefit of rSyn-1 in post-AMI treatment.


Subject(s)
Endothelial Cells , Myocardial Infarction , Animals , Mice , Endothelial Cells/pathology , Glycocalyx/pathology , Syndecan-1 , Myocytes, Cardiac , Myocardial Infarction/drug therapy , Myocardial Infarction/pathology
3.
J Am Soc Nephrol ; 33(9): 1641-1648, 2022 09.
Article in English | MEDLINE | ID: mdl-35853715

ABSTRACT

The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.


Subject(s)
Glomerular Mesangium , Kidney Glomerulus , Microcirculation , Kidney Glomerulus/blood supply , Arterioles , Kidney Tubules
4.
Am J Physiol Cell Physiol ; 323(2): C432-C438, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759436

ABSTRACT

The growing recognition of abundance of oscillating functions in biological systems has motivated this brief overview, which narrows down on the microvasculature. Specifically, it encompasses self-sustained oscillations of blood flow, hematocrit, and viscosity at bifurcations; blood flow effects on the oscillations of endothelial glycocalyx, mechanotransduction, and its termination to prime endothelial cells for the subsequent mechanical signaling event; oscillating affinity of hyaluronan-CD44 binding domain; spontaneous contractility of actomyosin complexes in the cortical actin web and its effects on the tension of the plasma membrane; reversible effects of sirtuin-1 on endothelial glycocalyx; and effects of plasma membrane tension on endo- and exocytosis. Some potential interactions between those oscillators, and their coupling, are discussed together with their transition into chaotic movements. Future in-depth understanding of the oscillatory activities in the microvasculature could serve as a guide to its chronotherapy under pathological conditions.


Subject(s)
Endothelial Cells , Glycocalyx , Actin Cytoskeleton , Glycocalyx/metabolism , Mechanotransduction, Cellular , Microvessels
5.
Am J Nephrol ; 53(2-3): 96-107, 2022.
Article in English | MEDLINE | ID: mdl-35259745

ABSTRACT

BACKGROUND: Mitochondrial, lysosomal, and peroxisomal dysfunction; defective autophagy; mitophagy; and pexophagy, as well as the loss of glycocalyx integrity are known contributors to initiation and progression of diverse kidney diseases. Those cellular organelles are tightly interactive in health, and during development of a disease, damage in one may propagate to others. By extension, it follows that restoring an individual defect may culminate in a broader restorative spectrum and improvement of cell and organ functions. SUMMARY: A novel strategy of reconditioning cellular organellar dysfunction, which we define as refurbishment of pathogenically pivotal intra- or extracellular elements, damaged in the course of disease and impeding restoration, is briefly outlined in this overview. Individual therapeutic reconditioning approaches targeting selected organelles are cataloged. We anticipate that the proposed reconditioning strategy in the future may enrich the arsenal of regenerative medicine and nephrology. KEY MESSAGE: The arsenal of regenerative medicine and nephrology consisting of organ transplantation, use of stem cells, cell-free approaches, cell reprogramming strategies, and organ engineering has been enriched by the reconditioning strategy. The latter is based on the recognition of two facts that (a) impairment of diverse cellular organelles contributes to pathogenesis of kidney disease and (b) individual organelles are functionally interactively coupled, which explains the "domino effect" leading to their dysfunction. Reconditioning takes advantage of these facts and, while initially directed to restore the function of individual cellular organelles, culminates in the propagation of a therapeutic intervention to account for improved cell and organ function. Examples of such interventions are briefly summarized along the presentation of defective cellular organelles contributing to pathogenesis of kidney disease.


Subject(s)
Kidney , Regeneration , Autophagy , Humans , Mitochondria , Mitophagy/physiology
6.
Biophys J ; 120(15): 3180-3191, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34197803

ABSTRACT

Vascular endothelial cells and circulating red blood cell (RBC) surfaces are both covered by a layer of bushy glycocalyx. The interplay between these glycocalyx layers is hardly measurable and insufficiently understood. This study aims to investigate and qualify the possible interactions between the glycocalyces of RBCs and endothelial cells using mathematical modeling and numerical simulation. Dissipative particle dynamics (DPD) simulations are conducted to investigate the response of the endothelial glycocalyx (EG) to varying ambient conditions. A two-compartment model including EG and flow and a three-compartment model comprising EG, RBC glycocalyx, and flow are established. The two-compartment analysis shows that a relatively fast flow is associated with a predominantly bending motion of the EG, whereas oscillatory motions are predominant in a relatively slow flow. Results show that circulating RBCs cause the contactless deformation of EG. Its deformation is dependent on the chain layout, chain length, bending stiffness, RBC-to-EG distance, and RBC velocities. Specifically, shorter EG chains or RBC-to-EG distance leads to greater relative deflections of EG. Deformation of EG is enhanced when the EG chains are rarefied or RBCs move faster. The bending stiffness maintains stretching conformation of EG. Moreover, a compact EG chain layout and shedding EG chains disturb the neighboring flow field, causing disordered flow velocity distributions. In contrast, the movement of EG chains on RBC surfaces exerts a marginal driving force on RBCs. The DPD method is used for the first time, to our knowledge, in the three-compartment system to explore the cross talk between EG and RBC glycocalyx. This study suggests that RBCs drive the EG deformation via the near-field flow, whereas marginal propulsion of RBCs by the EG is observed. These new, to our knowledge, findings provide a new angle to understand the roles of glycocalyx in mechanotransduction and microvascular permeability and their perturbations under idealized pathophysiologic conditions associated with EG degradation.


Subject(s)
Endothelial Cells , Glycocalyx , Computer Simulation , Erythrocytes , Mechanotransduction, Cellular
7.
Am J Pathol ; 190(6): 1164-1171, 2020 06.
Article in English | MEDLINE | ID: mdl-32194054

ABSTRACT

Chronic kidney disease (CKD), commonly fostering nonrenal complications, themselves more life threatening than renal pathology, remains enigmatic. Despite more than a century of intense research, therapeutic options to halt or reverse renal disease are rather limited. Recently, similarity between manifestations of progressive CKD and aging kidney has attracted investigative attention that revealed senescent cells and secreting proinflammatory and profibrotic mediators in all renal compartments, even at young age, in patients with kidney maladies. The overlapping features of these categories have been noticed previously and are briefly summarized herein. I propose two hypothetical scenarios for interactive association of kidney diseases and cell senescence, both culminating in progressive deterioration of renal function. Persistence of senescent cells is considered as a critical contributor to this association; and the mechanisms explaining persistence, such as activation of cell cycle regulators, anti-apoptotic stimuli, metabolic aberrations, and their interactions, are discussed. The mutual encroachment of underlying kidney disease and cell senescence bring about the conclusion that both entities merge along the natural history of the disease. This putative interpretation of vicarious relation between cell senescence and CKD may expand the arsenal of pharmacotherapy to include the judicious use of senotherapeutics in the management of renal disease.


Subject(s)
Cellular Senescence/physiology , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Humans
8.
Am J Pathol ; 190(4): 728-731, 2020 04.
Article in English | MEDLINE | ID: mdl-32061726

ABSTRACT

This Guest Editorial introduces the theme reviews focusing on the glycocalyx in human disease.


Subject(s)
Disease/etiology , Glycocalyx/physiology , Humans
9.
Am J Pathol ; 190(4): 791-798, 2020 04.
Article in English | MEDLINE | ID: mdl-32035882

ABSTRACT

Along with the recognition of a crucial role played by endothelial dysfunction secondarily igniting cardiovascular, pulmonary, and renal complications, investigational focus has extended toward endothelial glycocalyx. This delicate coating of cells, including the vascular endothelium, regulates permeability, leukocyte traffic, nitric oxide production, and coagulation, and harbors diverse growth and survival factors. In this brief overview, we discuss the metabolic signatures of sepsis as they relate to the loss of glycocalyx integrity and highlight the contribution of several proteases, heparanase, and hyaluronidase to the shedding of glycocalyx. Clinical manifestations of glycocalyx degradation in unraveling acute respiratory distress syndrome and the cardiovascular, microcirculatory, and renal complications of sepsis are concisely presented. Finally, we list therapeutic strategies for preventing the degradation of, and for restoration of, the glycocalyx.


Subject(s)
Endothelium, Vascular/pathology , Endotoxemia/pathology , Glycocalyx/metabolism , Sepsis/pathology , Animals , Endothelium, Vascular/metabolism , Endotoxemia/metabolism , Humans , Sepsis/metabolism
10.
Pflugers Arch ; 472(8): 991-1002, 2020 08.
Article in English | MEDLINE | ID: mdl-32494847

ABSTRACT

Sirtuin1 deficiency or reduced activity comprises one of the hallmarks of diseases as diverse as chronic cardiovascular, renal, and metabolic, some malignancies, and infections, as well as aging-associated diseases. In a mouse model of endothelium-limited defect in sirtuin 1 deacetylase activity, we found a dramatic reduction in the volume of endothelial glycocalyx. This was associated with the surge in the levels of one of key scaffolding heparan sulfate proteoglycans of endothelial glycocalyx, syndecan-4, and specifically, its extracellular domain (ectodomain). We found that the defect in endothelial sirtuin 1 deacetylase activity is associated with (a) elevated basal and stimulated levels of superoxide generation (via the FoxO1 over-acetylation mechanism) and (b) increased nuclear translocation of NF-kB (via p65 over-acetylation mechanism). These findings laid the foundation for the proposed novel function of sirtuin 1, namely, the maintenance of endothelial glycocalyx, particularly manifest in conditions associated with sirtuin 1 depletion. In the forthcoming review, we summarize the emerging conceptual framework of the enhanced glycocalyx degradation in the states of defective endothelial sirtuin 1 function, thus explaining a broad footprint of the syndrome of endothelial dysfunction, from impaired flow-induced nitric oxide production, deterrent leukocytes infiltration, increased endothelial permeability, coagulation, and pro-inflammatory changes to development of microvascular rarefaction and progression of an underlying disease.


Subject(s)
Endothelial Cells/metabolism , Endothelium/metabolism , Glycocalyx/metabolism , Sirtuin 1/metabolism , Animals , Humans , Nitric Oxide/metabolism
11.
Nephrol Dial Transplant ; 34(1): 49-62, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29726981

ABSTRACT

Background: Our laboratory has previously demonstrated that Sirt1endo-/- mice show endothelial dysfunction and exaggerated renal fibrosis, whereas mice with silenced endothelial transforming growth factor beta (TGF-ß) signaling are resistant to fibrogenic signals. Considering the fact that the only difference between these mutant mice is confined to the vascular endothelium, this indicates that secreted substances contribute to these contrasting responses. Methods: We performed an unbiased proteomic analysis of the secretome of renal microvascular endothelial cells (RMVECs) isolated from these two mutants. We cultured renal fibroblasts and RMVECs and used microfluidic devices for coculturing. Results: Dickkopf-3 (DKK3), a putative ligand of the Wnt/ß-catenin pathway, was present exclusively in the fibrogenic secretome. In cultured fibroblasts, DKK3 potently induced myofibroblast activation. In addition, DKK3 antagonized effects of DKK1, a known inhibitor of the Wnt pathway, in conversion of fibroblasts to myofibroblasts. In RMVECs, DKK3 induced endothelial-mesenchymal transition and impaired their angiogenic competence. The inhibition of endothelial outgrowth, enhanced myofibroblast formation and endothelial-mesenchymal transition were confirmed in coculture. In reporter DKK3-eGFP × Col3.6-GFPcyan mice, DKK3 was marginally expressed under basal conditions. Adriamycin-induced nephropathy resulted in upregulation of DKK3 expression in tubular and, to a lesser degree, endothelial compartments. Sulindac sulfide was found to exhibit superior Wnt pathway-suppressive action and decreased DKK3 signals and the extent of renal fibrosis. Conclusions: In conclusion, this unbiased proteomic screen of the profibrogenic endothelial secretome revealed DKK3 acting as an agonist of the Wnt pathway, enhancing formation of myofibroblasts and endothelial-mesenchymal transition and impairing angiogenesis. A potent inhibitor of the Wnt pathway, sulindac sulfide, suppressed nephropathy-induced DKK3 expression and renal fibrosis.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Endothelium, Vascular/pathology , Epithelial-Mesenchymal Transition , Fibrosis/pathology , Kidney Diseases/pathology , Proteome/analysis , Receptor, Transforming Growth Factor-beta Type II/physiology , Sirtuin 1/physiology , Animals , Endothelium, Vascular/metabolism , Fibrosis/metabolism , Kidney Diseases/metabolism , Mice , Mice, Knockout , Proteomics , Wnt Signaling Pathway , beta Catenin/metabolism
12.
Am J Physiol Heart Circ Physiol ; 314(3): H484-H496, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29101181

ABSTRACT

Syndecan-4 (Synd4) is a member of the membrane-spanning, glycocalyx-forming proteoglycan family. It has been suggested that Synd4 participates in renal fibrosis. We compared wild-type and fibrosis-prone endothelial sirtuin 1-deficient (Sirt1endo-/-) mice, the latter being a model of global endothelial dysfunction. We performed mass spectrometry analysis, which revealed that Synd4 was highly enriched in the secretome of renal microvascular endothelial cells obtained from Sirt1endo-/- mice upon stimulation with transforming growth factor-ß1; notably, all detectable peptides were confined to the ectodomain of Synd4. Elevated Synd4 was due to enhanced NF-κB signaling in Sirt1endo-/- mice, while its shedding occurred as a result of oxidative stress in Sirt1 deficiency. Synd4 expression was significantly enhanced after unilateral ureteral obstruction compared with contralateral kidneys. Furthermore, hyperplasia of renal myofibroblasts accompanied by microvascular rarefaction and overexpression of Synd4 were detected in Sirt1endo-/- mice. The ectodomain of Synd4 acted as a chemoattractant for monocytes with higher levels of macrophages and higher expression levels of Synd4 in the extracellular matrix of Sirt1endo-/- mice. In vitro, ectodomain application resulted in generation of myofibroblasts from cultured renal fibroblasts, while in vivo, subcapsular injection of ectodomain increased interstitial fibrosis. Moreover, the endothelial glycocalyx was reduced in Sirt1endo-/- mice, highlighting the induction of Synd4 occurring in parallel with the depletion of its intact form and accumulation of its ectodomain in Sirt1endo-/- mice. On the basis of our experimental results, we propose that it is the Synd4 ectodomain per se that is partially responsible for fibrosis in unilateral ureteral obstruction, especially when it is combined with endothelial dysfunction. NEW & NOTEWORTHY Our findings suggest that endothelial dysfunction induces the expression of syndecan-4 via activation of the NF-κB pathway. Furthermore, we show that syndecan-4 is shed to a greater amount because of increased oxidative stress in dysfunctional endothelial cells and that the release of the syndecan-4 ectodomain leads to tubulointerstitial fibrosis.


Subject(s)
Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Kidney Diseases/metabolism , Kidney/blood supply , Microvessels/metabolism , Syndecan-4/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Fibrosis , Glycocalyx/metabolism , Hyperplasia , Kidney/metabolism , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Mice, Knockout , Microvessels/pathology , Microvessels/physiopathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , NF-kappa B/metabolism , Oxidative Stress , Protein Domains , Signal Transduction , Sirtuin 1/deficiency , Sirtuin 1/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
13.
Nephrol Dial Transplant ; 33(2): 203-211, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28535253

ABSTRACT

After briefly discussing endothelial glycocalyx and its role in vascular physiology and renal disease, this overview focuses on its degradation very early in the course of microbial sepsis. We describe our recently proposed mechanism for glycocalyx degradation induced by exocytosis of lysosome-related organelles and release of their cargo. Notably, an intermediate in nitric oxide synthesis, NG-hydroxy-l-arginine, shows efficacy in curtailing exocytosis of these organelles and improvement in animal survival. These data not only depict a novel mechanism responsible for very early glycocalyx degradation, but may also outline a potential preventive therapy. The second issue discussed in this article is related to the therapeutic acceleration of restoration of already degraded endothelial glycocalyx. Here, using as an example our recent findings obtained with sulodexide, we illustrate the importance of the expedited repair of degraded endothelial glycocalyx for the survival of animals with severe sepsis. These two focal points of the review on glycocalyx may not only have broader disease applicability, but they may also provide additional evidence to buttress the idea of the importance of endothelial glycocalyx and its maintenance and repair in the prevention and treatment of an array of renal and nonrenal diseases.


Subject(s)
Endothelium, Vascular/metabolism , Glycocalyx/metabolism , Kidney Diseases/complications , Kidney Diseases/pathology , Sepsis/complications , Sepsis/pathology , Animals , Humans , Kidney Diseases/metabolism , Sepsis/metabolism
14.
Am J Physiol Renal Physiol ; 312(2): F266-F275, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27852610

ABSTRACT

Three decades ago a revolutionary idea was born that ascribed to dysfunctional endothelia some manifestations of diabetes, the Steno hypothesis, so named after the Steno Diabetes Center, Gentofte, in Denmark. Here I briefly outline the accomplishments accrued in the past 15 years to buttress this hypothesis. Those include development of novel technological platforms to examine microcirculatory beds, deeper understanding of patterns of microvascular derangement in diabetes, pathophysiology of nitric oxide synthesis and availability, nitrosative and oxidative stress in diabetes, premature senescence of endothelial cells and the role of sirtuin 1 and lysosomal dysfunction in this process, and the state of endothelial glycocalyx and endothelial progenitor cells in diabetes. These pathophysiological findings may yield some therapeutic benefits.


Subject(s)
Diabetes Mellitus/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Microcirculation/physiology , Animals , Diabetes Mellitus/physiopathology , Endothelium, Vascular/physiopathology , Humans , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/physiology
15.
Kidney Int ; 92(3): 558-568, 2017 09.
Article in English | MEDLINE | ID: mdl-28476555

ABSTRACT

The secretome, defined as a portion of proteins secreted by specific cells to the extracellular space, secures a proper microenvironmental niche not only for the donor cells, but also for the neighboring cells, thus maintaining tissue homeostasis. Communication via secretory products exists between endothelial cells and fibroblasts, and this local mechanism maintains the viability and density of each compartment. Endothelial dysfunction, apart from obvious cell-autonomous defects, leads to the aberrant secretome, which predisposes fibroblasts to acquire a myofibroblastic fibrogenic phenotype. In our recent profiling of the secretome of such dysfunctional profibrogenic renal microvascular endothelial cells, we identified unique profibrogenic signatures, among which we detected ligands of Notch and Wnt-ß-catenin pathways. Here, we stress the role of reprogramming cues in the immediate microenvironment of (myo)fibroblasts and the contribution of the endothelial secretome to the panoply of instructive signals in the vicinity of fibroblasts. We hope that this brief overview of endothelial-fibroblast communication in health and disease will lead to eventual unbiased proteomic mapping of individual secretomes of glomerular and tubular epithelial cells, pericytes, and podocytes through reductionist approaches to allow for the synthetic creation of a complex network of secretomic signals acting as reprogramming factors on individual cell types in the kidney. Knowledge of profibrogenic and antifibrogenic signatures in the secretome may garner future therapeutic efforts.


Subject(s)
Endothelial Cells/pathology , Kidney Tubules/pathology , Microvessels/pathology , Myofibroblasts/pathology , Proteome/metabolism , Renal Insufficiency, Chronic/pathology , Animals , Cellular Senescence , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Extracellular Space/metabolism , Fibrosis , Humans , Kidney Tubules/blood supply , Kidney Tubules/metabolism , Mice , Microvessels/cytology , Microvessels/metabolism , Myofibroblasts/metabolism , Proteomics , Receptors, Notch/metabolism , Renal Insufficiency, Chronic/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
16.
Am J Pathol ; 186(2): 248-58, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26683662

ABSTRACT

Sepsis is a systemic inflammatory syndrome induced by bacterial infection that can lead to multiorgan failure. Endothelial surface glycocalyx (ESG) decorating the inner wall of blood vessels is a regulator of multiple vascular functions. Here, we tested a hypothesis that patchy degradation of ESG occurs early in sepsis and is a result of exocytosis of lysosome-related organelles. Time-lapse video microscopy revealed that exocytosis of Weibel-Palade bodies and secretory lysosomes occurred a few minutes after application of lipopolysaccharides to endothelial cells. Two therapeutic maneuvers, a nitric oxide intermediate, NG-hydroxy-l-arginine, and culture media conditioned by endothelial progenitor cells reduced the motility of lysosome-related organelles. Confocal and stochastic optical reconstruction microscopy confirmed the patchy loss of ESG simultaneously with the exocytosis of lysosome-related organelles and Weibel-Palade bodies in cultured endothelial cells and mouse aorta. The loss of ESG was blunted by pretreatment with NG-hydroxy-l-arginine or culture media conditioned by endothelial progenitor cells. Moreover, these treatments resulted in a significant reduction in deaths of septic mice. Our data support the hypothesis assigning to stress-induced exocytosis of these organelles the role of a hair-trigger for local degradation of ESG that initiates leukocyte infiltration, increase in vascular permeability, and partially accounts for the later rates of morbidity and mortality.


Subject(s)
Exocytosis/drug effects , Glycocalyx/metabolism , Sepsis/metabolism , Animals , Capillary Permeability/drug effects , Cell Line , Cells, Cultured , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hair/drug effects , Hair/metabolism , Humans , Lipopolysaccharides/pharmacology , Lysosomes/metabolism , Male , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Sepsis/drug therapy
17.
Am J Physiol Cell Physiol ; 311(6): C846-C853, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27681180

ABSTRACT

The endothelial surface glycocalyx (ESG) is a carbohydrate-rich layer found on the vascular endothelium, serving critical functions in the mechanotransduction of blood flow-induced forces. One of the most important protective functions of the ESG is to mediate the production of nitric oxide (NO) in response to blood flow. However, the detailed mechanism underlying ESG's mechanotransduction of the production of NO has not been completely identified. Herein, using the cultured rat brain microvascular endothelial cells (bEnd.3) as a model system, we have implemented a combined atomic force and fluorescence microscopy approach to show that the ESG senses and transduces vertical mechanical stretch to produce NO. This rapid NO production is dependent on the presence of both heparan sulfate (HS) and hyaluronic acid (HA) in ESG, as the removal of HS and/or HA leads to a significant decrease in NO production. Moreover, the production of NO is dependent on the intake of Ca2+ via endothelial transient receptor potential (TRP) channels. Together, our results demonstrate the molecular mechanism of rapid production of NO in response to vertical mechanical stretch.


Subject(s)
Endothelium, Vascular/metabolism , Endothelium, Vascular/physiology , Glycocalyx/metabolism , Glycocalyx/physiology , Mechanotransduction, Cellular/physiology , Nitric Oxide/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Cells, Cultured , Heparitin Sulfate/metabolism , Hyaluronic Acid/metabolism , Rats , Stress, Mechanical
18.
Kidney Int ; 89(6): 1281-92, 2016 06.
Article in English | MEDLINE | ID: mdl-27165830

ABSTRACT

Endostatin (EST), an antiangiogenic factor, is enriched in aging kidneys. EST is also an interactive partner of transglutaminase 2 (TG2), an enzyme that cross-links extracellular matrix proteins. Here we tested whether EST and TG2 play a role in the fibrosis of aging. In wild-type mice, aging kidneys exhibited a 2- to 4-fold increase in TG2 paralleled by increased cross-linked extracellular matrix proteins and fibrosis. Mice transgenic to express EST showed renal fibrosis at a young age. One-month delivery of EST via minipumps to young mice showed increased renal fibrosis that became more robust when superimposed on folic acid-induced nephropathy. Upregulated TG2 and impaired renal function were apparent with EST delivery combined with folic acid-induced nephropathy. Subcapsular injection of TG2 and/or EST into kidneys of young mice not only induced interstitial fibrosis, but also increased the proportion of senescent cells. Thus, kidney fibrosis in aging may represent a natural outcome of upregulated EST and TG2, but more likely it appears to be a result of cumulative stresses occurring on the background of synergistically acting geronic (aging) proteins, EST and TG2.


Subject(s)
Aging/metabolism , Collagen Type XVIII/metabolism , Endostatins/metabolism , GTP-Binding Proteins/metabolism , Kidney Diseases/pathology , Kidney/pathology , Transglutaminases/metabolism , Animals , Cells, Cultured , Cellular Senescence/drug effects , Collagen Type XVIII/genetics , Collagen Type XVIII/pharmacology , Endostatins/genetics , Endostatins/pharmacology , Endothelial Cells , Extracellular Matrix Proteins , Fibrosis , Folic Acid/toxicity , GTP-Binding Proteins/genetics , GTP-Binding Proteins/pharmacology , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases/genetics , Transglutaminases/pharmacology , Up-Regulation
19.
Biochem Biophys Res Commun ; 478(3): 1074-9, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27524235

ABSTRACT

Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Compared to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-ß1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-ß1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression.


Subject(s)
Capillaries/pathology , Endothelial Cells/metabolism , Kidney/injuries , Kidney/pathology , Receptors, Notch/metabolism , Sirtuin 1/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Endothelial Cells/pathology , Fibrosis , Intracellular Signaling Peptides and Proteins/metabolism , Kidney/metabolism , Membrane Proteins/metabolism , Mice , Myofibroblasts/metabolism , Myofibroblasts/pathology , Neovascularization, Physiologic , Pericytes/metabolism , Pericytes/pathology , Signal Transduction , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
20.
J Am Soc Nephrol ; 26(4): 817-29, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25535303

ABSTRACT

Excessive TGF-ß signaling in epithelial cells, pericytes, or fibroblasts has been implicated in CKD. This list has recently been joined by endothelial cells (ECs) undergoing mesenchymal transition. Although several studies focused on the effects of ablating epithelial or fibroblast TGF-ß signaling on development of fibrosis, there is a lack of information on ablating TGF-ß signaling in the endothelium because this ablation causes embryonic lethality. We generated endothelium-specific heterozygous TGF-ß receptor knockout (TßRII(endo+/-)) mice to explore whether curtailed TGF-ß signaling significantly modifies nephrosclerosis. These mice developed normally, but showed enhanced angiogenic potential compared with TßRII(endo+/+) mice under basal conditions. After induction of folic acid nephropathy or unilateral ureteral obstruction, TßRII(endo+/-) mice exhibited less tubulointerstitial fibrosis, enhanced preservation of renal microvasculature, improvement in renal blood flow, and less tissue hypoxia than TßRII(endo+/+) counterparts. In addition, partial deletion of TßRII in the endothelium reduced endothelial-to-mesenchymal transition (EndoMT). TGF-ß-induced canonical Smad2 signaling was reduced in TßRII(+/-) ECs; however, activin receptor-like kinase 1 (ALK1)-mediated Smad1/5 phosphorylation in TßRII(+/-) ECs remained unaffected. Furthermore, the S-endoglin/L-endoglin mRNA expression ratio was significantly lower in TßRII(+/-) ECs compared with TßRII(+/+) ECs. These observations support the hypothesis that EndoMT contributes to renal fibrosis and curtailing endothelial TGF-ß signals favors Smad1/5 proangiogenic programs and dictates increased angiogenic responses. Our data implicate endothelial TGF-ß signaling and EndoMT in regulating angiogenic and fibrotic responses to injury.


Subject(s)
Cell Transdifferentiation , Endothelium/metabolism , Kidney/pathology , Renal Insufficiency, Chronic/metabolism , Transforming Growth Factor beta/metabolism , Animals , Endoglin , Endothelium/pathology , Fibrosis , Folic Acid , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Transgenic , Neovascularization, Physiologic , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Renal Insufficiency, Chronic/pathology , Smad Proteins/metabolism , Ureteral Obstruction
SELECTION OF CITATIONS
SEARCH DETAIL