Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Cell ; 186(9): 1824-1845, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37116469

ABSTRACT

Cachexia, a systemic wasting condition, is considered a late consequence of diseases, including cancer, organ failure, or infections, and contributes to significant morbidity and mortality. The induction process and mechanistic progression of cachexia are incompletely understood. Refocusing academic efforts away from advanced cachexia to the etiology of cachexia may enable discoveries of new therapeutic approaches. Here, we review drivers, mechanisms, organismal predispositions, evidence for multi-organ interaction, model systems, clinical research, trials, and care provision from early onset to late cachexia. Evidence is emerging that distinct inflammatory, metabolic, and neuro-modulatory drivers can initiate processes that ultimately converge on advanced cachexia.


Subject(s)
Cachexia , Humans , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Muscle, Skeletal/metabolism , Neoplasms/complications , Neoplasms/metabolism , Neoplasms/pathology , Infections/complications , Infections/pathology , Multiple Organ Failure/complications , Multiple Organ Failure/pathology
2.
Nature ; 613(7945): 759-766, 2023 01.
Article in English | MEDLINE | ID: mdl-36631611

ABSTRACT

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Subject(s)
Phosphoproteins , Protein Serine-Threonine Kinases , Proteome , Serine , Threonine , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Substrate Specificity , Threonine/metabolism , Proteome/chemistry , Proteome/metabolism , Datasets as Topic , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Cell Line , Phosphoserine/metabolism , Phosphothreonine/metabolism
3.
Nature ; 597(7875): 263-267, 2021 09.
Article in English | MEDLINE | ID: mdl-34408323

ABSTRACT

Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally1,2. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell3,4. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival5-7. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.


Subject(s)
Fructose/pharmacology , High Fructose Corn Syrup/pharmacology , Intestinal Absorption/drug effects , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Nutrients/metabolism , Animals , Cell Survival/drug effects , Enzyme Activation , Female , Fructokinases/metabolism , Fructose/metabolism , High Fructose Corn Syrup/metabolism , Hypoxia/diet therapy , Hypoxia/pathology , Intestinal Mucosa/metabolism , Lipid Metabolism/drug effects , Male , Mice , Pyruvate Kinase/metabolism
4.
Mol Cell ; 70(3): 531-544.e9, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29727621

ABSTRACT

While the majority of phosphatidylinositol-4, 5-bisphosphate (PI-4, 5-P2) in mammalian cells is generated by the conversion of phosphatidylinositol-4-phosphate (PI-4-P) to PI-4, 5-P2, a small fraction can be made by phosphorylating phosphatidylinositol-5-phosphate (PI-5-P). The physiological relevance of this second pathway is not clear. Here, we show that deletion of the genes encoding the two most active enzymes in this pathway, Pip4k2a and Pip4k2b, in the liver of mice causes a large enrichment in lipid droplets and in autophagic vesicles during fasting. These changes are due to a defect in the clearance of autophagosomes that halts autophagy and reduces the supply of nutrients salvaged through this pathway. Similar defects in autophagy are seen in nutrient-starved Pip4k2a-/-Pip4k2b-/- mouse embryonic fibroblasts and in C. elegans lacking the PI5P4K ortholog. These results suggest that this alternative pathway for PI-4, 5-P2 synthesis evolved, in part, to enhance the ability of multicellular organisms to survive starvation.


Subject(s)
Autophagy/physiology , Fasting/metabolism , Lipid Metabolism/physiology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Autophagosomes/metabolism , Caenorhabditis elegans/metabolism , Cell Line , Fibroblasts/metabolism , HEK293 Cells , Humans , Liver/metabolism , Mice , Phosphatidylinositol Phosphates/metabolism , Signal Transduction/physiology
5.
Prostate ; 84(1): 8-24, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37888416

ABSTRACT

BACKGROUND: Over the last 20 years, fructose has gradually emerged as a potential metabolic substrate capable of promoting the growth and progression of various cancers, including prostate cancer (PCa). The biological and molecular mechanisms that underlie the effects of fructose on cancer are beginning to be elucidated. METHODS: This review summarizes the biological function of fructose as a potential carbon source for PCa cells and its role in the functionality of the male reproductive tract under normal conditions. RESULTS: The most recent biological advances related to fructose transport and metabolism as well as their implications in PCa growth and progression suggest that fructose represent a potential carbon source for PCa cells. Consequently, fructose derivatives may represent efficient radiotracers for obtaining PCa images via positron emission tomography and fructose transporters/fructose-metabolizing enzymes could be utilized as potential diagnostic and/or predictive biomarkers for PCa. CONCLUSION: The existing data suggest that restriction of fructose from the diet could be a useful therapeutic strategy for patients with PCa.


Subject(s)
Fructose , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Positron-Emission Tomography , Genitalia, Male , Carbon
6.
Nature ; 560(7719): 499-503, 2018 08.
Article in English | MEDLINE | ID: mdl-30051890

ABSTRACT

Mutations in PIK3CA, which encodes the p110α subunit of the insulin-activated phosphatidylinositol-3 kinase (PI3K), and loss of function mutations in PTEN, which encodes a phosphatase that degrades the phosphoinositide lipids generated by PI3K, are among the most frequent events in human cancers1,2. However, pharmacological inhibition of PI3K has resulted in variable clinical responses, raising the possibility of an inherent mechanism of resistance to treatment. As p110α mediates virtually all cellular responses to insulin, targeted inhibition of this enzyme disrupts glucose metabolism in multiple tissues. For example, blocking insulin signalling promotes glycogen breakdown in the liver and prevents glucose uptake in the skeletal muscle and adipose tissue, resulting in transient hyperglycaemia within a few hours of PI3K inhibition. The effect is usually transient because compensatory insulin release from the pancreas (insulin feedback) restores normal glucose homeostasis3. However, the hyperglycaemia may be exacerbated or prolonged in patients with any degree of insulin resistance and, in these cases, necessitates discontinuation of therapy3-6. We hypothesized that insulin feedback induced by PI3K inhibitors may reactivate the PI3K-mTOR signalling axis in tumours, thereby compromising treatment effectiveness7,8. Here we show, in several model tumours in mice, that systemic glucose-insulin feedback caused by targeted inhibition of this pathway is sufficient to activate PI3K signalling, even in the presence of PI3K inhibitors. This insulin feedback can be prevented using dietary or pharmaceutical approaches, which greatly enhance the efficacy/toxicity ratios of PI3K inhibitors. These findings have direct clinical implications for the multiple p110α inhibitors that are in clinical trials and provide a way to increase treatment efficacy for patients with many types of tumour.


Subject(s)
Feedback, Physiological/drug effects , Insulin/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Blood Glucose/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
8.
Am J Physiol Endocrinol Metab ; 325(5): E500-E512, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37672249

ABSTRACT

The ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway are the primary means of degradation in mammalian tissues. We sought to determine the individual contribution of the UPS and autophagy to tissue catabolism during fasting. Mice were overnight fasted for 15 h before regaining food access ("Fed" group, n = 6) or continuing to fast ("Fast" group, n = 7) for 3 h. In addition, to investigate the effects of autophagy on systemic metabolism and tissue degradation, one group of mice was fasted for 18 h and treated with chloroquine ("Fast + CLQ" group, n = 7) and a fourth group of mice was treated with bortezomib ("Fast + Bort" group, n = 7) to assess the contribution of the UPS. Body weight, tissue weight, circulating hormones and metabolites, intracellular signaling pathways, and protein synthesis were investigated. Fasting induced the loss of body weight, liver mass, and white adipose tissue in the Fast and the Fast + CLQ group, whereas the Fast + Bort group maintained tissue and body weight. Fasting reduced glucose and increased ß hydroxybutyrate in the circulation of all mice. Both changes were most profound in the Fast + Bort group compared with the other fasting conditions. Molecular signaling indicated a successful inhibition of hepatic UPS with bortezomib and an upregulation of the PI3K/AKT/mTOR pathway. The latter was further supported by an increase in hepatic protein synthesis with bortezomib. Inhibition of the UPS through bortezomib blocks body weight loss and tissue catabolism during an acute overnight fast in mice. The effects were likely mediated through a combined effect of the drug on biomolecule degradation and synthesis.NEW & NOTEWORTHY Bortezomib treatment prevents tissue and body weight loss during fasting. The loss of proteasome activity with bortezomib exacerbates fasting-induced ketogenesis. During fasting, bortezomib increases AMPK and PI3K/AKT signaling in the liver, which promotes protein synthesis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proteasome Endopeptidase Complex , Mice , Animals , Proteasome Endopeptidase Complex/metabolism , Bortezomib/pharmacology , Proteolysis , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitin/metabolism , Ubiquitin/pharmacology , Fasting/metabolism , Nutrients , Weight Loss , Body Weight , Autophagy , Mammals/metabolism
9.
PLoS Comput Biol ; 16(8): e1008098, 2020 08.
Article in English | MEDLINE | ID: mdl-32764756

ABSTRACT

Drug repurposing, identifying novel indications for drugs, bypasses common drug development pitfalls to ultimately deliver therapies to patients faster. However, most repurposing discoveries have been led by anecdotal observations (e.g. Viagra) or experimental-based repurposing screens, which are costly, time-consuming, and imprecise. Recently, more systematic computational approaches have been proposed, however these rely on utilizing the information from the diseases a drug is already approved to treat. This inherently limits the algorithms, making them unusable for investigational molecules. Here, we present a computational approach to drug repurposing, CATNIP, that requires only biological and chemical information of a molecule. CATNIP is trained with 2,576 diverse small molecules and uses 16 different drug similarity features, such as structural, target, or pathway based similarity. This model obtains significant predictive power (AUC = 0.841). Using our model, we created a repurposing network to identify broad scale repurposing opportunities between drug types. By exploiting this network, we identified literature-supported repurposing candidates, such as the use of systemic hormonal preparations for the treatment of respiratory illnesses. Furthermore, we demonstrated that we can use our approach to identify novel uses for defined drug classes. We found that adrenergic uptake inhibitors, specifically amitriptyline and trimipramine, could be potential therapies for Parkinson's disease. Additionally, using CATNIP, we predicted the kinase inhibitor, vandetanib, as a possible treatment for Type 2 Diabetes. Overall, this systematic approach to drug repurposing lays the groundwork to streamline future drug development efforts.


Subject(s)
Computational Biology/methods , Drug Repositioning/methods , Machine Learning , Software , Algorithms , Antiparkinson Agents , Hypoglycemic Agents , Models, Statistical
10.
Proc Natl Acad Sci U S A ; 115(4): E743-E752, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29311302

ABSTRACT

The cancer anorexia cachexia syndrome is a systemic metabolic disorder characterized by the catabolism of stored nutrients in skeletal muscle and adipose tissue that is particularly prevalent in nonsmall cell lung cancer (NSCLC). Loss of skeletal muscle results in functional impairments and increased mortality. The aim of the present study was to characterize the changes in systemic metabolism in a genetically engineered mouse model of NSCLC. We show that a portion of these animals develop loss of skeletal muscle, loss of adipose tissue, and increased inflammatory markers mirroring the human cachexia syndrome. Using noncachexic and fasted animals as controls, we report a unique cachexia metabolite phenotype that includes the loss of peroxisome proliferator-activated receptor-α (PPARα) -dependent ketone production by the liver. In this setting, glucocorticoid levels rise and correlate with skeletal muscle degradation and hepatic markers of gluconeogenesis. Restoring ketone production using the PPARα agonist, fenofibrate, prevents the loss of skeletal muscle mass and body weight. These results demonstrate how targeting hepatic metabolism can prevent muscle wasting in lung cancer, and provide evidence for a therapeutic strategy.


Subject(s)
Cachexia/prevention & control , Carcinoma, Non-Small-Cell Lung/complications , Fenofibrate/therapeutic use , Lung Neoplasms/complications , PPAR gamma/agonists , Amino Acids/metabolism , Animals , Cachexia/blood , Cachexia/etiology , Drug Evaluation, Preclinical , Fenofibrate/pharmacology , Gluconeogenesis , Ketone Bodies/deficiency , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , PPAR gamma/metabolism
12.
Article in English | MEDLINE | ID: mdl-38621831

ABSTRACT

Diet and exercise are modifiable lifestyle factors known to have a major influence on metabolism. Clinical practice addresses diseases of altered metabolism such as diabetes or hypertension by altering these factors. Despite enormous public interest, there are limited defined diet and exercise regimens for cancer patients. Nevertheless, the molecular basis of cancer has converged over the past 15 years on an essential role for altered metabolism in cancer. However, our understanding of the molecular mechanisms that underlie the impact of diet and exercise on cancer metabolism is in its very early stages. In this work, we propose conceptual frameworks for understanding the consequences of diet and exercise on cancer cell metabolism and tumor biology and also highlight recent developments. By advancing our mechanistic understanding, we also discuss actionable ways that such interventions could eventually reach the mainstay of both medical oncology and cancer control and prevention.

13.
Acta Physiol (Oxf) ; : e14167, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779820

ABSTRACT

AIM: To investigate systemic regulators of the cancer-associated cachexia syndrome (CACS) in a pre-clinical model for lung cancer with the goal to identify therapeutic targets for tissue wasting. METHODS: Using the Kras/Lkb1 (KL) mouse model, we found that CACS is associated with white adipose tissue (WAT) dysfunction that directly affects skeletal muscle homeostasis. WAT transcriptomes showed evidence of reduced adipogenesis, and, in agreement, we found low levels of circulating adiponectin. To preserve adipogenesis and restore adiponectin levels, we treated mice with the PPAR-γ agonist, rosiglitazone. RESULTS: Rosiglitazone treatment increased serum adiponectin levels, delayed weight loss, and preserved skeletal muscle and adipose tissue mass, as compared to vehicle-treated mice. The preservation of muscle mass with rosiglitazone was associated with increases in AMPK and AKT activity. Similarly, activation of the adiponectin receptors in muscle cells increased AMPK activity, anabolic signaling, and protein synthesis. CONCLUSION: Our data suggest that PPAR-γ agonists may be a useful adjuvant therapy to preserve tissue mass in lung cancer.

14.
NPJ Breast Cancer ; 10(1): 12, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297009

ABSTRACT

Hyperglycemia and rash are expected but challenging adverse events of phosphatidylinositol-3-kinase inhibition (such as with alpelisib). Two modified Delphi panels were conducted to provide consensus recommendations for managing hyperglycemia and rash in patients taking alpelisib. Experts rated the appropriateness of interventions on a 1-to-9 scale; median scores and dispersion were used to classify the levels of agreement. Per the hyperglycemia panel, it is appropriate to start alpelisib in patients with HbA1c 6.5% (diabetes) to <8%, or at highest risk for developing hyperglycemia, if they have a pre-treatment endocrinology consult. Recommend prophylactic metformin in patients with baseline HbA1c 5.7% to 6.4%. Metformin is the preferred first-line anti-hyperglycemic agent. Per the rash panel, initiate prophylactic nonsedating H1 antihistamines in patients starting alpelisib. Nonsedating H1 antihistamines and topical steroids are the preferred initial management for rash. In addition to clinical trial evidence, these recommendations will help address gaps encountered in clinical practice.

15.
Eur Urol Open Sci ; 57: 1-7, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020528

ABSTRACT

Background: Androgen deprivation therapy (ADT) is a common treatment modality for men with prostate cancer. Increases in adipose tissue mass and decreases in skeletal muscle mass are known on-target adverse effects of standard ADT. The effects of newer agents such as abiraterone acetate (ABI) and enzalutamide (ENZA) on body composition and how these compare with standard luteinizing hormone-releasing hormone agonists (aLHRHs) are unclear. Objective: To assess the effects of different forms of androgen deprivation therapy on body composition in men with prostate cancer. Design setting and participants: Using a retrospective design, 229 patients receiving aLHRHs alone (n = 120) or in combination with ABI (n = 53) or ENZA (n = 56) were studied. Outcome measurements and statistical analysis: Muscle, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) were assessed at baseline, 6 mo, and 18 mo after initiating therapy using a cross-sectional densitometry analysis performed on standard of care computed tomography images. Response trajectories for all treatment groups were calculated via a two-way analysis of variance post hoc test, for both within-group and between-group differences. Results and limitations: Treatment with aLHRHs, ABI, and ENZA was associated with a median muscle volume loss of -1.4%, -4.8%, and -5.5% at 6 mo, and -7.1%, -8.1%, and -8.3% at 18 mo, respectively. Therapy with aLHRHs was associated with minimal changes in VAT (0.3% at 6 mo and -0.1% at 18 mo). ABI therapy was associated with significant increases in VAT at 6 mo (4.9%) but not at 18 mo (0.5%), and ENZA therapy was associated with significant decreases in VAT (-4.6% at 6 mo and -5.4% at 18 mo). With respect to SAT, treatment with aLHRHs was associated with increases over time (8.6% at 6 mo and 4.7% at 18 mo), ABI was associated with decreases over time (-3.6% at 6 mo and -6.8% at 18 mo), and ENZA had no clear effects (1.7% at 6 mo and 3.3% at 18 mo). Conclusions: ADT regimens cause significant short-term losses in muscle mass, with the most rapid effects occurring with ABI and ENZA. The three regimens have disparate effects on SAT and VAT, suggesting distinct roles of androgens in these tissues. Patient summary: Androgen deprivation therapy alters body composition in men with prostate cancer. Abiraterone and enzalutamide are associated with losses in muscle mass compared with luteinizing hormone-releasing hormone agonists. These treatments impact subcutaneous and visceral fat mass, suggesting distinct roles of androgens in these tissues.

16.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292804

ABSTRACT

A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk, two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK-STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia.

17.
Mol Metab ; 78: 101831, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925022

ABSTRACT

OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) has a role in controlling postprandial metabolic tone. In humans, a GIP receptor (GIPR) variant (Q354, rs1800437) is associated with a lower body mass index (BMI) and increased risk for Type 2 Diabetes. To better understand the impacts of GIPR-Q354 on metabolism, it is necessary to study it in an isogeneic background to the predominant GIPR isoform, E354. To accomplish this objective, we used CRISPR-CAS9 editing to generate mouse models of GIPR-Q354 and GIPR-E354. Here we characterize the metabolic effects of GIPR-Q354 variant in a mouse model (GIPR-Q350). METHODS: We generated the GIPR-Q350 mice for in vivo studies of metabolic impact of the variant. We isolated pancreatic islets from GIPR-Q350 mice to study insulin secretion ex vivo. We used a ß-cell cell line to understand the impact of the GIPR-Q354 variant on the receptor traffic. RESULTS: We found that female GIPR-Q350 mice are leaner than littermate controls, and male GIPR-Q350 mice are resistant to diet-induced obesity, in line with the association of the variant with reduced BMI in humans. GIPR-Q350 mice of both sexes are more glucose tolerant and exhibit an increased sensitivity to GIP. Postprandial GIP levels are reduced in GIPR-Q350 mice, revealing feedback regulation that balances the increased sensitivity of GIP target tissues to secretion of GIP from intestinal endocrine cells. The increased GIP sensitivity is recapitulated ex vivo during glucose stimulated insulin secretion assays in islets. Generation of cAMP in islets downstream of GIPR activation is not affected by the Q354 substitution. However, post-activation traffic of GIPR-Q354 variant in ß-cells is altered, characterized by enhanced intracellular dwell time and increased localization to the Trans-Golgi Network (TGN). CONCLUSIONS: Our data link altered intracellular traffic of the GIPR-Q354 variant with GIP control of metabolism. We propose that this change in spatiotemporal signaling underlies the physiologic effects of GIPR-Q350/4 and GIPR-E350/4 in mice and humans. These findings contribute to a more complete understanding of the impact of GIPR-Q354 variant on glucose homeostasis that could perhaps be leveraged to enhance pharmacologic targeting of GIPR for the treatment of metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Humans , Male , Animals , Female , Mice , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Receptors, G-Protein-Coupled/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucose/metabolism , Homeostasis
18.
Cancer Discov ; 13(11): 2432-2447, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37623743

ABSTRACT

Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme. Inhibition of wild-type PI3Kα is associated with severe hyperglycemia and rash, which limits alpelisib use and suggests that selectively targeting mutant PI3Kα could reduce toxicity and improve efficacy. Here we describe STX-478, an allosteric PI3Kα inhibitor that selectively targets prevalent PI3Kα helical- and kinase-domain mutant tumors. STX-478 demonstrated robust efficacy in human tumor xenografts without causing the metabolic dysfunction observed with alpelisib. Combining STX-478 with fulvestrant and/or cyclin-dependent kinase 4/6 inhibitors was well tolerated and provided robust and durable tumor regression in ER+HER2- xenograft tumor models. SIGNIFICANCE: These preclinical data demonstrate that the mutant-selective, allosteric PI3Kα inhibitor STX-478 provides robust efficacy while avoiding the metabolic dysfunction associated with the nonselective inhibitor alpelisib. Our results support the ongoing clinical evaluation of STX-478 in PI3Kα-mutated cancers, which is expected to expand the therapeutic window and mitigate counterregulatory insulin release. See related commentary by Kearney and Vasan, p. 2313. This article is featured in Selected Articles from This Issue, p. 2293.


Subject(s)
Breast Neoplasms , Neoplasms , Humans , Female , Heterografts , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics
19.
Cell Metab ; 35(7): 1147-1162.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37311455

ABSTRACT

Glucose dependency of cancer cells can be targeted with a high-fat, low-carbohydrate ketogenic diet (KD). However, in IL-6-producing cancers, suppression of the hepatic ketogenic potential hinders the utilization of KD as energy for the organism. In IL-6-associated murine models of cancer cachexia, we describe delayed tumor growth but accelerated cachexia onset and shortened survival in mice fed KD. Mechanistically, this uncoupling is a consequence of the biochemical interaction of two NADPH-dependent pathways. Within the tumor, increased lipid peroxidation and, consequently, saturation of the glutathione (GSH) system lead to the ferroptotic death of cancer cells. Systemically, redox imbalance and NADPH depletion impair corticosterone biosynthesis. Administration of dexamethasone, a potent glucocorticoid, increases food intake, normalizes glucose levels and utilization of nutritional substrates, delays cachexia onset, and extends the survival of tumor-bearing mice fed KD while preserving reduced tumor growth. Our study emphasizes the need to investigate the effects of systemic interventions on both the tumor and the host to accurately assess therapeutic potential. These findings may be relevant to clinical research efforts that investigate nutritional interventions such as KD in patients with cancer.


Subject(s)
Diet, Ketogenic , Ferroptosis , Neoplasms , Mice , Animals , Cachexia , Corticosterone , Interleukin-6 , NADP , Ketone Bodies , Glucose , Neoplasms/complications
20.
Clin Transl Med ; 13(10): e1391, 2023 10.
Article in English | MEDLINE | ID: mdl-37759102

ABSTRACT

BACKGROUND: Lung cancer remains the major cause of cancer-related deaths worldwide. Early stages of lung cancer are characterized by long asymptomatic periods that are ineffectively identified with the current screening programs. This deficiency represents a lost opportunity to improve the overall survival of patients. Serum biomarkers are among the most effective strategies for cancer screening and follow up. METHODS: Using bead-based multiplexing assays we screened plasma and tumours of the KrasG12D/+; Lkb1f/f (KL) mouse model of lung cancer for cytokines that could be used as biomarkers. We identified tissue inhibitor of metalloproteinase 1 (TIMP1) as an early biomarker and validated this finding in the plasma of lung cancer patients. We used immunohistochemistry (IHC), previously published single-cell RNA-seq and bulk RNA-seq data to assess the source and expression of TIMP1in the tumour. The prognostic value of TIMP1 was assessed using publicly available human proteomic and transcriptomic databases. RESULTS: We found that TIMP1 is a tumour-secreted protein with high sensitivity and specificity for aggressive cancer, even at early stages in mice. We showed that TIMP1 levels in the tumour and serum correlate with tumour burden and worse survival in mice. We validated this finding using clinical samples from our institution and publicly available human proteomic and transcriptomic databases. These data support the finding that high tumour expression of TIMP1 correlates with an unfavorable prognosis in lung cancer patients. CONCLUSION: TIMP1 is a suitable biomarker for lung cancer detection.


Subject(s)
Lung Neoplasms , Tissue Inhibitor of Metalloproteinase-1 , Humans , Animals , Mice , Tissue Inhibitor of Metalloproteinase-1/genetics , Proteomics , Prognosis , Biomarkers , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Neoplasm Proteins
SELECTION OF CITATIONS
SEARCH DETAIL