Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 628(8009): 776-781, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658683

ABSTRACT

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Subject(s)
Carbon , Fresh Water , Carbon/analysis , Carbon/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Fresh Water/chemistry , Lakes/chemistry , Lignin/chemistry , Oxidation-Reduction , Oxygen/chemistry , Polyphenols/chemistry , Rivers/chemistry , Sweden , Tannins/chemistry , Carbon Cycle
2.
Sci Total Environ ; 912: 169292, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38104835

ABSTRACT

Reverse osmosis (RO) is widely used for seawater desalination but pre-chlorination of intake water produces halogenated disinfection byproducts (DBPs). The fate and environmental impacts associated with the discharge of DBP-containing RO brine wastewater are unknown. Therefore, to evaluate if photochemistry plays a role in DBP degradation in seawater, we collected samples at a desalination plant, which were desalted and concentrated using two-inline solid phase extraction (SPE) techniques combining reverse-phase polymeric (PPL) and weak anion exchange (WAX) resins. Both filtered water samples and SPE samples (extracts reconstituted in open ocean seawater) were exposed to simulated sunlight in a custom-built flow-through system. Optical property analysis during irradiation experiments did not provide distinguishing features between intake water and RO reject water (brine). Extractable organic bromine (organoBr) concentrations were low in intake water samples (7.8 µg Br L-1) and did not change significantly due to irradiation. OrganoBr concentrations in laboratory-chlorinated raw water were much higher (135 µg Br L-1) and on average decreased by 42 % after 24 h irradiation. However, while organoBr concentrations were highest in RO reject water (473 µg Br L-1), changes in organoBr concentrations in PPL SPE samples after 24 h irradiation were variable, ranging from a 1-46 % loss. Furthermore, most bromine-containing molecular ions identified by high resolution mass spectrometry that were present in RO reject water before irradiation were also found after both 24 h and 50 h exposures. Although only one RO reject water sample was tested in this study, results highlight that hundreds of yet to be identified brominated DBPs in RO reject water could be resistant to photodegradation or phototransform into existing DBPs in the environment. Future work examining the biolability of DBPs in RO reject water, as well as the interplay between photochemical and biological DBP cycling, is warranted.

3.
Front Microbiol ; 15: 1357822, 2024.
Article in English | MEDLINE | ID: mdl-38633701

ABSTRACT

SAR202 bacteria are abundant in the marine environment and they have been suggested to contribute to the utilization of recalcitrant organic matter (RDOM) within the ocean's biogeochemical cycle. However, this functional role has only been postulated by metagenomic studies. During a one-year microcosm incubation of an open ocean microbial community with lysed Synechococcus and its released DOM, SAR202 became relatively more abundant in the later stage (after day 30) of the incubation. Network analysis illustrated a high degree of negative associations between SAR202 and a unique group of molecular formulae (MFs) in phase 2 (day 30 to 364) of the incubation, which is empirical evidence that SAR202 bacteria are major consumers of the more oxygenated, unsaturated, and higher-molecular-weight MFs. Further investigation of the SAR202-associated MFs suggested that they were potentially secondary products arising from initial heterotrophic activities following the amendment of labile Synechococcus-derived DOM. This pilot study provided a preliminary observation on the correspondence between SAR202 bacteria and more resistant DOM, further supporting the hypothesis that SAR202 bacteria play important roles in the degradation of RDOM and thus the ocean's biogeochemical cycle.

4.
Commun Biol ; 7(1): 853, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997445

ABSTRACT

SAR202 bacteria in the Chloroflexota phylum are abundant and widely distributed in the ocean. Their genome coding capacities indicate their potential roles in degrading complex and recalcitrant organic compounds in the ocean. However, our understanding of their genomic diversity, vertical distribution, and depth-related metabolisms is still limited by the number of assembled SAR202 genomes. In this study, we apply deep metagenomic sequencing (180 Gb per sample) to investigate microbial communities collected from six representative depths at the Bermuda Atlantic Time Series (BATS) station. We obtain 173 SAR202 metagenome-assembled genomes (MAGs). Intriguingly, 154 new species and 104 new genera are found based on these 173 SAR202 genomes. We add 12 new subgroups to the current SAR202 lineages. The vertical distribution of 20 SAR202 subgroups shows their niche partitioning in the euphotic, mesopelagic, and bathypelagic oceans, respectively. Deep-ocean SAR202 bacteria contain more genes and exhibit more metabolic potential for degrading complex organic substrates than those from the euphotic zone. With deep metagenomic sequencing, we uncover many new lineages of SAR202 bacteria and their potential functions which greatly deepen our understanding of their diversity, vertical profile, and contribution to the ocean's carbon cycling, especially in the deep ocean.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Metagenomics/methods , Oceans and Seas , Metagenome , Seawater/microbiology , Phylogeny , Genome, Bacterial , Chloroflexi/genetics , Chloroflexi/classification , Bermuda , Adaptation, Physiological/genetics , Microbiota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL