Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Pathol ; 262(3): 271-288, 2024 03.
Article in English | MEDLINE | ID: mdl-38230434

ABSTRACT

Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Breast Neoplasms , Humans , Female , Biomarkers, Tumor/genetics , Prognosis , Phenotype , United Kingdom , Tumor Microenvironment
2.
J Pathol ; 260(5): 514-532, 2023 08.
Article in English | MEDLINE | ID: mdl-37608771

ABSTRACT

Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Colonic Neoplasms , Humans , Biomarkers , Benchmarking , Lymphocytes, Tumor-Infiltrating , Spatial Analysis , Tumor Microenvironment
3.
J Pathol ; 260(5): 498-513, 2023 08.
Article in English | MEDLINE | ID: mdl-37608772

ABSTRACT

The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Humans , Animals , Lymphocytes, Tumor-Infiltrating , Biomarkers , Machine Learning
4.
Breast Cancer Res Treat ; 197(2): 307-317, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36396775

ABSTRACT

PURPOSE: Increased body mass index (BMI) and metabolic syndrome (MS) are associated with increased breast cancer recurrence risk. Whether this is due to intrinsic tumor biology or modifiable factors of the obese state remains incompletely understood. METHODS: Oncotype DX Recurrence Scores of 751 patients were stratified by BMI to assess association with tumor-intrinsic recurrence risk. Cellular proliferation by Ki67 after 10-21 days of presurgical letrozole treatment was used to stratify endocrine therapy response (sensitive-ln(Ki67) < 1; intermediate-ln(Ki67)1-2; resistant-ln(Ki67) > = 2). BMI at the time of surgery and MS variables were collected retrospectively for 143 patients to analyze association between therapy response and BMI/MS. Additionally, PI3K pathway signaling was evaluated by immunohistochemistry of phosphorylated Akt and S6. RESULTS: There was no significant association between BMI and recurrence score (p = 0.99), and risk score distribution was similar across BMI groups. However, BMI was associated with short-term endocrine therapy resistance, with a significant enrichment of intermediate and resistant tumors in patients with obesity (55%, p = 0.0392). Similarly, the relative risk of an endocrine therapy-resistant tumor was 1.4-fold greater for patients with MS (p = 0.0197). In evaluating PI3K pathway mediators, we found patients with 3 or more MS criteria had more tumors with pAkt scores above the median (p = 0.0436). There were no significant differences in S6 activation. CONCLUSION: Our findings suggest the association between obesity/metabolic syndrome and breast cancer recurrence is better reflected by response to treatment than tumor-intrinsic properties, suggesting interventions to reverse obesity and/or MS may improve outcomes for breast cancer recurrence.


Subject(s)
Breast Neoplasms , Metabolic Syndrome , Humans , Female , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Ki-67 Antigen , Metabolic Syndrome/complications , Retrospective Studies , Phosphatidylinositol 3-Kinases/metabolism , Neoplasm Recurrence, Local/pathology , Obesity/complications , Biomarkers, Tumor/metabolism
5.
J Pathol ; 250(5): 667-684, 2020 04.
Article in English | MEDLINE | ID: mdl-32129476

ABSTRACT

Immune checkpoint inhibitor therapies targeting PD-1/PD-L1 are now the standard of care in oncology across several hematologic and solid tumor types, including triple negative breast cancer (TNBC). Patients with metastatic or locally advanced TNBC with PD-L1 expression on immune cells occupying ≥1% of tumor area demonstrated survival benefit with the addition of atezolizumab to nab-paclitaxel. However, concerns regarding variability between immunohistochemical PD-L1 assay performance and inter-reader reproducibility have been raised. High tumor-infiltrating lymphocytes (TILs) have also been associated with response to PD-1/PD-L1 inhibitors in patients with breast cancer (BC). TILs can be easily assessed on hematoxylin and eosin-stained slides and have shown reliable inter-reader reproducibility. As an established prognostic factor in early stage TNBC, TILs are soon anticipated to be reported in daily practice in many pathology laboratories worldwide. Because TILs and PD-L1 are parts of an immunological spectrum in BC, we propose the systematic implementation of combined PD-L1 and TIL analyses as a more comprehensive immuno-oncological biomarker for patient selection for PD-1/PD-L1 inhibition-based therapy in patients with BC. Although practical and regulatory considerations differ by jurisdiction, the pathology community has the responsibility to patients to implement assays that lead to optimal patient selection. We propose herewith a risk-management framework that may help mitigate the risks of suboptimal patient selection for immuno-therapeutic approaches in clinical trials and daily practice based on combined TILs/PD-L1 assessment in BC. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Triple Negative Breast Neoplasms/pathology , B7-H1 Antigen/immunology , Biomarkers, Tumor/immunology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Risk Management , Triple Negative Breast Neoplasms/immunology
6.
Mol Cell Proteomics ; 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28416578

ABSTRACT

This article has been withdrawn by the authors. We discovered an error after this manuscript was published as a Paper in Press. Specifically, we learned that the structures of glycans presented for the PD-L1 peptide were drawn and labeled incorrectly. We wish to withdraw this article and submit a corrected version for review.

7.
Mol Cell Proteomics ; 16(10): 1705-1717, 2017 10.
Article in English | MEDLINE | ID: mdl-28546465

ABSTRACT

Quantitative assessment of key proteins that control the tumor-immune interface is one of the most formidable analytical challenges in immunotherapeutics. We developed a targeted MS platform to quantify programmed cell death-1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2) at fmol/microgram protein levels in formalin fixed, paraffin-embedded sections from 22 human melanomas. PD-L1 abundance ranged 50-fold, from ∼0.03 to 1.5 fmol/microgram protein and the parallel reaction monitoring (PRM) data were largely concordant with total PD-L1-positive cell content, as analyzed by immunohistochemistry (IHC) with the E1L3N antibody. PD-1 was measured at levels up to 20-fold lower than PD-L1, but the abundances were not significantly correlated (r2 = 0.062, p = 0.264). PD-1 abundance was weakly correlated (r2 = 0.3057, p = 0.009) with the fraction of lymphocytes and histiocytes in sections. PD-L2 was measured from 0.03 to 1.90 fmol/microgram protein and the ratio of PD-L2 to PD-L1 abundance ranged from 0.03 to 2.58. In 10 samples, PD-L2 was present at more than half the level of PD-L1, which suggests that PD-L2, a higher affinity PD-1 ligand, is sufficiently abundant to contribute to T-cell downregulation. We also identified five branched mannose and N-acetylglucosamine glycans at PD-L1 position N192 in all 22 samples. Extent of PD-L1 glycan modification varied by ∼10-fold and the melanoma with the highest PD-L1 protein abundance and most abundant glycan modification yielded a very low PD-L1 IHC estimate, thus suggesting that N-glycosylation may affect IHC measurement and PD-L1 function. Additional PRM analyses quantified immune checkpoint/co-regulator proteins LAG3, IDO1, TIM-3, VISTA, and CD40, which all displayed distinct expression independent of PD-1, PD-L1, and PD-L2. Targeted MS can provide a next-generation analysis platform to advance cancer immuno-therapeutic research and diagnostics.


Subject(s)
B7-H1 Antigen/metabolism , Mass Spectrometry/methods , Melanoma/metabolism , Programmed Cell Death 1 Ligand 2 Protein/metabolism , Programmed Cell Death 1 Receptor/metabolism , Skin Neoplasms/metabolism , Acetylglucosamine/analysis , Adult , Aged , B7-H1 Antigen/genetics , Biopsy , Cohort Studies , Female , Glycosylation , Humans , Male , Mannose/analysis , Melanoma/diagnosis , Middle Aged , Polysaccharides/analysis , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Receptor/genetics , Protein Processing, Post-Translational , Skin Neoplasms/diagnosis , T-Lymphocytes/metabolism
8.
Histopathology ; 72(2): 342-350, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29110314

ABSTRACT

We describe a 44-year-old female with triple-negative breast cancer who developed skin erythaema, sclerosis and contracture of her entire right breast 15 months after completion of post-lumpectomy chemotherapy and radiotherapy, consistent with post-irradiation morphoea (PIM). PIM is a rare complication of breast irradiation that impairs a patient's quality of life. PIM is located usually at the radiation port or in the surrounding tissue. Clinically, PIM is misdiagnosed commonly as lymphoedema and cellulitis in the early inflammatory phase, and recurrent breast cancer, chronic radiodermatitis (CRD), radiation-induced fibrosis (RIF), post-irradiation pseudosclerodermatous panniculitis (PIPP), atypical vascular lesions (AVL) or angiosarcoma (AS) in the late burnout phase. Arriving at the correct diagnosis typically requires a multidisciplinary approach, including a skin biopsy for confirmation. To date, satisfactory treatment of this condition has been challenging. and the clinical outcome after therapy is often unsatisfactory.


Subject(s)
Radiation Injuries/pathology , Scleroderma, Localized/etiology , Scleroderma, Localized/pathology , Triple Negative Breast Neoplasms/radiotherapy , Adult , Female , Humans
9.
Adv Anat Pathol ; 24(5): 235-251, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28777142

ABSTRACT

Assessment of tumor-infiltrating lymphocytes (TILs) in histopathologic specimens can provide important prognostic information in diverse solid tumor types, and may also be of value in predicting response to treatments. However, implementation as a routine clinical biomarker has not yet been achieved. As successful use of immune checkpoint inhibitors and other forms of immunotherapy become a clinical reality, the need for widely applicable, accessible, and reliable immunooncology biomarkers is clear. In part 1 of this review we briefly discuss the host immune response to tumors and different approaches to TIL assessment. We propose a standardized methodology to assess TILs in solid tumors on hematoxylin and eosin sections, in both primary and metastatic settings, based on the International Immuno-Oncology Biomarker Working Group guidelines for TIL assessment in invasive breast carcinoma. A review of the literature regarding the value of TIL assessment in different solid tumor types follows in part 2. The method we propose is reproducible, affordable, easily applied, and has demonstrated prognostic and predictive significance in invasive breast carcinoma. This standardized methodology may be used as a reference against which other methods are compared, and should be evaluated for clinical validity and utility. Standardization of TIL assessment will help to improve consistency and reproducibility in this field, enrich both the quality and quantity of comparable evidence, and help to thoroughly evaluate the utility of TILs assessment in this era of immunotherapy.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Neoplasms, Second Primary/pathology , Animals , Biomarkers, Tumor/analysis , Humans , Pathologists
10.
Adv Anat Pathol ; 24(6): 311-335, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28777143

ABSTRACT

Assessment of the immune response to tumors is growing in importance as the prognostic implications of this response are increasingly recognized, and as immunotherapies are evaluated and implemented in different tumor types. However, many different approaches can be used to assess and describe the immune response, which limits efforts at implementation as a routine clinical biomarker. In part 1 of this review, we have proposed a standardized methodology to assess tumor-infiltrating lymphocytes (TILs) in solid tumors, based on the International Immuno-Oncology Biomarkers Working Group guidelines for invasive breast carcinoma. In part 2 of this review, we discuss the available evidence for the prognostic and predictive value of TILs in common solid tumors, including carcinomas of the lung, gastrointestinal tract, genitourinary system, gynecologic system, and head and neck, as well as primary brain tumors, mesothelioma and melanoma. The particularities and different emphases in TIL assessment in different tumor types are discussed. The standardized methodology we propose can be adapted to different tumor types and may be used as a standard against which other approaches can be compared. Standardization of TIL assessment will help clinicians, researchers and pathologists to conclusively evaluate the utility of this simple biomarker in the current era of immunotherapy.


Subject(s)
Brain Neoplasms/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Squamous Cell/immunology , Endometrial Neoplasms/immunology , Gastrointestinal Neoplasms/immunology , Head and Neck Neoplasms/immunology , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma/immunology , Mesothelioma/immunology , Ovarian Neoplasms/immunology , Pathology/methods , Skin Neoplasms/immunology , Urogenital Neoplasms/immunology , Biomarkers, Tumor/analysis , Biopsy , Brain Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Endometrial Neoplasms/pathology , Female , Gastrointestinal Neoplasms/pathology , Head and Neck Neoplasms/pathology , Humans , Immunohistochemistry , Lung Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Melanoma/pathology , Mesothelioma/pathology , Ovarian Neoplasms/pathology , Pathology/standards , Phenotype , Predictive Value of Tests , Skin Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck , Urogenital Neoplasms/pathology
11.
Clin Cancer Res ; 30(18): 4077-4081, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39007881

ABSTRACT

PURPOSE: Immunotherapy (IO) in triple-negative breast cancer (TNBC) has improved survival outcomes, with promising improvements in pCR rates among early high-risk hormone receptor (HR)+/HER2- breast cancers. However, biomarkers are needed to select patients likely to benefit from IO. MHC-I and tumor-specific MHC-II (tsMHC-II) expression are candidate biomarkers for PD-(L)1 checkpoint inhibition but existing data from clinical trials included limited racial/ethnic diversity. EXPERIMENTAL DESIGN: We performed multiplexed immunofluorescence assays in the Carolina Breast Cancer Study (CBCS; n = 1,628, 48% Black, 52% non-Black). Intrinsic subtype and P53 mutant-like status were identified using RNA-based multigene assays. We ranked participants based on tumoral MHC-I intensity (top 33% categorized as "MHC-Ihigh") and MHC-II+ (≥5% of tumor cells as tsMHC-II+). MHC-I/II were evaluated in association with clinicopathological features by race. RESULTS: Black participants had higher frequency of TNBC (25% vs. 12.5%, P ≤ 0.001) and basal-like (30% vs. 14%, P ≤ 0.001) tumors overall, and higher frequency of basal-like (11% vs. 5.5%, P = 0.002) and TP53 mutant tumors (26% vs. 17%, P = 0.002) among HR+/HER2-. The frequency of tsMHC-II+ was higher in HR+/HER2- Black participants (7.9% vs. 4.9%, P = 0.04). Black participants also had higher frequency of MHC-Ihigh (38.7% vs. 28.2%, P < 0.001), which was significant among HR+/HER2- (28.2% vs. 22.1%, P = 0.02). CONCLUSIONS: In this diverse study population, MHC-I and MHC-II tumor cell expression were more highly expressed in HR+/HER2- tumors from Black women, underscoring the importance of diverse and equitable enrollment in future IO trials.


Subject(s)
Biomarkers, Tumor , Triple Negative Breast Neoplasms , Humans , Female , Biomarkers, Tumor/genetics , Middle Aged , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Aged , Adult , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Prognosis , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Immunotherapy/methods
12.
Cancer Lett ; 586: 216681, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38311054

ABSTRACT

Triple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer. Given the important roles of the PI3K pathway in immune and tumor cell signaling, there is an interest in using inhibitors of this pathway to increase the response to ICI. This study sought to determine if AKT inhibition could enhance the response to ICI in murine TNBC models. We further sought to understand underlying mechanisms of response or non-response to AKT inhibition in combination with ICI. Using four murine TNBC-like cell lines and corresponding orthotopic mouse tumor models, we found that hyperactivity of the PI3K pathway, as evidenced by levels of phospho-AKT rather than PI3K pathway mutational status, was associated with response to AKT inhibition alone and in combination with ICI. Additional mutations in other growth regulatory pathways could override the response of PI3K pathway mutant tumors to AKT inhibition. Furthermore, we observed that AKT inhibition enhanced the response to ICI in an already sensitive model. However, AKT inhibition failed to convert ICI-resistant tumors, to responsive tumors. These findings suggest that analysis of both the mutational status and phospho-AKT protein levels may be beneficial in predicting which TNBC tumors will respond to AKT inhibition in combination with ICI.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Disease Models, Animal , Cell Line, Tumor
13.
JAMA Oncol ; 10(2): 193-201, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38095878

ABSTRACT

Importance: Agents targeting programmed death ligand 1 (PD-L1) have demonstrated efficacy in triple-negative breast cancer (TNBC) when combined with chemotherapy and are now the standard of care in patients with PD-L1-positive metastatic disease. In contrast to microtubule-targeting agents, the effect of combining platinum compounds with programmed cell death 1 (PD-1)/PD-L1 immunotherapy has not been extensively determined. Objective: To evaluate the efficacy of atezolizumab with carboplatin in patients with metastatic TNBC. Design, Setting, and Participants: This phase 2 randomized clinical trial was conducted in 6 centers from August 2017 to June 2021. Interventions: Patients with metastatic TNBC were randomized to receive carboplatin area under the curve (AUC) 6 alone or with atezolizumab, 1200 mg, every 3 weeks until disease progression or unacceptable toxic effects with a 3-year duration of follow-up. Main Outcome and Measures: The primary end point was investigator-assessed progression-free survival (PFS). Secondary end points included overall response rate (ORR), clinical benefit rate (CBR), and overall survival (OS). Other objectives included correlation of response with tumor PD-L1 levels, tumor-infiltrating lymphocytes (TILs), tumor DNA- and RNA-sequenced biomarkers, TNBC subtyping, and multiplex analyses of immune markers. Results: All 106 patients with metastatic TNBC who were enrolled were female with a mean (range) age of 55 (27-79) years, of which 12 (19%) identified as African American/Black, 1 (1%) as Asian, 73 (69%) as White, and 11 (10%) as unknown. Patients were randomized and received either carboplatin (n = 50) or carboplatin and atezolizumab (n = 56). The combination improved PFS (hazard ratio [HR], 0.66; 95% CI, 0.44-1.01; P = .05) from a median of 2.2 to 4.1 months, increased ORR from 8.0% (95% CI, 3.2%-18.8%) to 30.4% (95% CI, 19.9%-43.3%), increased CBR at 6 months from 18.0% (95% CI, 9.8%-30.1%) to 37.5% (95% CI, 26.0%-50.6%), and improved OS (HR, 0.60; 95% CI, 0.37-0.96; P = .03) from a median of 8.6 to 12.6 months. Subgroup analysis showed PD-L1-positive tumors did not benefit more from adding atezolizumab (HR, 0.62; 95% CI, 0.23-1.65; P = .35). Patients with high TILs (HR, 0.12; 95% CI, 0.30-0.50), high mutation burden (HR, 0.50; 95% CI, 0.23-1.06), and prior chemotherapy (HR, 0.59; 95% CI, 0.36-0.95) received greater benefit on the combination. Patients with obesity and patients with more than 125 mg/dL on-treatment blood glucose levels were associated with better PFS (HR, 0.35; 95% CI, 0.10-1.80) on the combination. TNBC subtypes benefited from adding atezolizumab, except the luminal androgen receptor subtype. Conclusions and Relevance: In this randomized clinical trial, the addition of atezolizumab to carboplatin significantly improved survival of patients with metastatic TNBC regardless of PD-L1 status. Further, lower risk of disease progression was associated with increased TILs, higher mutation burden, obesity, and uncontrolled blood glucose levels. Trial Registration: ClinicalTrials.gov Identifier: NCT03206203.


Subject(s)
Antibodies, Monoclonal, Humanized , Triple Negative Breast Neoplasms , Humans , Female , Middle Aged , Aged , Male , Carboplatin/therapeutic use , Triple Negative Breast Neoplasms/pathology , B7-H1 Antigen/immunology , Blood Glucose , Ligands , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers , Disease Progression , Obesity , Apoptosis
14.
Cancer Discov ; 14(2): 290-307, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37791898

ABSTRACT

Despite the success of immune checkpoint inhibition (ICI) in treating cancer, patients with triple-negative breast cancer (TNBC) often develop resistance to therapy, and the underlying mechanisms are unclear. MHC-I expression is essential for antigen presentation and T-cell-directed immunotherapy responses. This study demonstrates that TNBC patients display intratumor heterogeneity in regional MHC-I expression. In murine models, loss of MHC-I negates antitumor immunity and ICI response, whereas intratumor MHC-I heterogeneity leads to increased infiltration of natural killer (NK) cells in an IFNγ-dependent manner. Using spatial technologies, MHC-I heterogeneity is associated with clinical resistance to anti-programmed death (PD) L1 therapy and increased NK:T-cell ratios in human breast tumors. MHC-I heterogeneous tumors require NKG2A to suppress NK-cell function. Combining anti-NKG2A and anti-PD-L1 therapies restores complete response in heterogeneous MHC-I murine models, dependent on the presence of activated, tumor-infiltrating NK and CD8+ T cells. These results suggest that similar strategies may enhance patient benefit in clinical trials. SIGNIFICANCE: Clinical resistance to immunotherapy is common in breast cancer, and many patients will likely require combination therapy to maximize immunotherapeutic benefit. This study demonstrates that heterogeneous MHC-I expression drives resistance to anti-PD-L1 therapy and exposes NKG2A on NK cells as a target to overcome resistance. This article is featured in Selected Articles from This Issue, p. 201.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Immunotherapy/methods , Killer Cells, Natural , CD8-Positive T-Lymphocytes , B7-H1 Antigen/metabolism
15.
Cancer Res ; 84(5): 675-687, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38190717

ABSTRACT

Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/metabolism , Neoplasm Recurrence, Local , Receptor Protein-Tyrosine Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Tumor Microenvironment , ATPases Associated with Diverse Cellular Activities/metabolism , DNA-Binding Proteins/metabolism
16.
J Immunother Cancer ; 11(11)2023 11 20.
Article in English | MEDLINE | ID: mdl-38315170

ABSTRACT

BACKGROUND: Despite the remarkable success of immunotherapy in treating melanoma, understanding of the underlying mechanisms of resistance remains limited. Emerging evidence suggests that upregulation of tumor-specific major histocompatibility complex-II (tsMHC-II) serves as a predictive marker for the response to anti-programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) therapy in various cancer types. The genetic and epigenetic pathways modulating tsMHC-II expression remain incompletely characterized. Here, we provide evidence that polycomb repressive complex 2 (PRC2)/EZH2 signaling and resulting H3K27 hypermethylation suppresses tsMHC-II. METHODS: RNA sequencing data from tumor biopsies from patients with cutaneous melanoma treated with or without anti-PD-1, targeted inhibition assays, and assays for transposase-accessible chromatin with sequencing were used to observe the relationship between EZH2 inhibition and interferon (IFN)-γ inducibility within the MHC-II pathway. RESULTS: We find that increased EZH2 pathway messenger RNA (mRNA) expression correlates with reduced mRNA expression of both presentation and T-cell genes. Notably, targeted inhibition assays revealed that inhibition of EZH2 influences the expression dynamics and inducibility of the MHC-II pathway following IFN-γ stimulation. Additionally, our analysis of patients with metastatic melanoma revealed a significant inverse association between PRC2-related gene expression and response to anti-PD-1 therapy. CONCLUSIONS: Collectively, our findings demonstrate that EZH2 inhibition leads to enhanced MHC-II expression potentially resulting from improved chromatin accessibility at CIITA, the master regulator of MHC-II. These insights shed light on the molecular mechanisms involved in tsMHC-II suppression and highlight the potential of targeting EZH2 as a therapeutic strategy to improve immunotherapy efficacy.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Interferons/pharmacology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Histocompatibility Antigens , Chromatin , RNA, Messenger/genetics
17.
Nat Cancer ; 4(6): 893-907, 2023 06.
Article in English | MEDLINE | ID: mdl-37248394

ABSTRACT

Disseminated tumor cells with metabolic flexibility to utilize available nutrients in distal organs persist, but the precise mechanisms that facilitate metabolic adaptations remain unclear. Here we show fragmented mitochondrial puncta in latent brain metastatic (Lat) cells enable fatty acid oxidation (FAO) to sustain cellular bioenergetics and maintain redox homeostasis. Depleting the enriched dynamin-related protein 1 (DRP1) and limiting mitochondrial plasticity in Lat cells results in increased lipid droplet accumulation, impaired FAO and attenuated metastasis. Likewise, pharmacological inhibition of DRP1 using a small-molecule brain-permeable inhibitor attenuated metastatic burden in preclinical models. In agreement with these findings, increased phospho-DRP1 expression was observed in metachronous brain metastasis compared with patient-matched primary tumors. Overall, our findings reveal the pivotal role of mitochondrial plasticity in supporting the survival of Lat cells and highlight the therapeutic potential of targeting cellular plasticity programs in combination with tumor-specific alterations to prevent metastatic recurrences.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Dynamins/metabolism , Mitochondria/metabolism , Cell Line, Tumor , Brain Neoplasms/drug therapy
18.
Appl Immunohistochem Mol Morphol ; 30(9): 600-608, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36083147

ABSTRACT

Clinical trials in patients with ER+ breast cancer with or without FGFR pathway somatic alterations have shown limited clinical benefit from treatment with FGFR tyrosine kinase inhibitors alone or in combination with endocrine therapy. This is likely because of an inadequate predictive biomarker to select appropriate patients. In this study, we evaluated 4 anti-FGFR1 antibodies in breast cancer cell lines and patient-derived xenografts with FGFR1 amplification. We correlated D8E4 expression in 209 tumors from postmenopausal patients with stage I-III operable ER+ breast cancer with FGFR1 amplification status as determined by fluorescence in situ hybridization. FGFR1 amplification was identified in 10% of tumors (21/209), 80% of which exhibited membranous FGFR1 expression; however, only 50% of amplified cases showed strong, complete membranous staining (3+) based on established criteria to score HER2 by immunohistochemistry. These findings suggest the combined evaluation of FGFR1 status by immunohistochemistry and fluorescence in situ hybridization may need to be incorporated into the selection of patients for trials with FGFR inhibitors.


Subject(s)
Breast Neoplasms , Receptor, Fibroblast Growth Factor, Type 1 , Breast Neoplasms/pathology , Female , Gene Amplification , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Protein Kinase Inhibitors/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism
19.
Cancer Res Commun ; 2(5): 286-292, 2022 05.
Article in English | MEDLINE | ID: mdl-36304942

ABSTRACT

Biomarkers of response are needed in breast cancer to stratify patients to appropriate therapies and avoid unnecessary toxicity. We used peripheral blood gene expression and cell type abundance to identify biomarkers of response and recurrence in neoadjuvant chemotherapy treated breast cancer patients. We identified a signature of interferon and complement response that was higher in the blood of patients with pathologic complete response. This signature was preferentially expressed by monocytes in single cell RNA sequencing. Monocytes are routinely measured clinically, enabling examination of clinically measured monocytes in multiple independent cohorts. We found that peripheral monocytes were higher in patients with good outcomes in four cohorts of breast cancer patients. Blood gene expression and cell type abundance biomarkers may be useful for prognostication in breast cancer. Significance: Biomarkers are needed in breast cancer to identify patients at risk for recurrence. Blood is an attractive site for biomarker identification due to the relative ease of longitudinal sampling. Our study suggests that blood-based gene expression and cell type abundance biomarkers may have clinical utility in breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Monocytes/metabolism , Leukocytes, Mononuclear/metabolism , Biomarkers , Neoadjuvant Therapy
20.
Cell Metab ; 34(1): 90-105.e7, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34986341

ABSTRACT

HER2+ breast cancer patients are presented with either synchronous (S-BM), latent (Lat), or metachronous (M-BM) brain metastases. However, the basis for disparate metastatic fitness among disseminated tumor cells of similar oncotype within a distal organ remains unknown. Here, employing brain metastatic models, we show that metabolic diversity and plasticity within brain-tropic cells determine metastatic fitness. Lactate secreted by aggressive metastatic cells or lactate supplementation to mice bearing Lat cells limits innate immunosurveillance and triggers overt metastasis. Attenuating lactate metabolism in S-BM impedes metastasis, while M-BM adapt and survive as residual disease. In contrast to S-BM, Lat and M-BM survive in equilibrium with innate immunosurveillance, oxidize glutamine, and maintain cellular redox homeostasis through the anionic amino acid transporter xCT. Moreover, xCT expression is significantly higher in matched M-BM brain metastatic samples compared to primary tumors from HER2+ breast cancer patients. Inhibiting xCT function attenuates residual disease and recurrence in these preclinical models.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Animals , Brain/metabolism , Brain Neoplasms/secondary , Breast Neoplasms/metabolism , Female , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL