Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Inorg Chem ; 63(23): 10843-10853, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38810089

ABSTRACT

Synthesis and characterization of DEMOFs (defect-engineered metal-organic frameworks) with coordinatively unsaturated sites (CUSs) for gas adsorption, catalysis, and separation are reported. We use the mixed-linker approach to introduce defects in Cu2-paddle wheel units of MOFs [Cu2(Me-trz-ia)2] by replacing up to 7% of the 3-methyl-triazolyl isophthalate linker (1L2-) with the "defective linker" 3-methyl-triazolyl m-benzoate (2L-), causing uncoordinated equatorial sites. PXRD of DEMOFs shows broadened reflections; IR and Raman analysis demonstrates only marginal changes as compared to the regular MOF (ReMOF, without a defective linker). The concentration of the integrated defective linker in DEMOFs is determined by 1H NMR and HPLC, while PXRD patterns reveal that DEMOFs maintain phase purity and crystallinity. Combined XPS (X-ray photoelectron spectroscopy) and cw EPR (continuous wave electron paramagnetic resonance) spectroscopy analyses provide insights into the local structure of defective sites and charge balance, suggesting the presence of two types of defects. Notably, an increase in CuI concentration is observed with incorporation of defective linkers, correlating with the elevated isosteric heat of adsorption (ΔHads). Overall, this approach offers valuable insights into the creation and evolution of CUSs within MOFs through the integration of defective linkers.

2.
J Synchrotron Radiat ; 30(Pt 3): 613-619, 2023 May 01.
Article in English | MEDLINE | ID: mdl-37067260

ABSTRACT

The Ambient-Pressure X-ray Photoelectron Spectroscopy (APXPS) endstation at the SPECIES beamline at MAX IV Laboratory has been improved. The latest upgrades help in performing photo-assisted experiments under operando conditions in the mbar pressure range using gas and vapour mixtures whilst also reducing beam damage to the sample caused by X-ray irradiation. This article reports on endstation upgrades for APXPS and examples of scientific cases of in situ photocatalysis, photoreduction and photo-assisted atomic layer deposition (photo-ALD).

3.
Phys Chem Chem Phys ; 25(33): 22040-22054, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37555468

ABSTRACT

The present work demonstrates the effect of temperature-dependent surface modification (SM) treatment and its influence in broadening the catalysis regime with Pd-TiO2 catalysts prepared by various methods. Due to SM induced changes, a shift in the onset of CO oxidation activity as well as broadening of the oxidation catalysis regime by 30 to 65 K to lower temperatures is observed compared to the temperature required for virgin counterparts. SM carried out at 523 K for PdPhoto-TiO2 exhibits the lowest onset (10% CO2 production - T10) and T100 for CO oxidation at 360 and 392 K, respectively, while its virgin counterpart shows T10 and T100 at 393 and 433 K, respectively. The SMd Pd-TiO2 catalysts were investigated using X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS) and atomic force microscopy (AFM). It is observed that diffusion of atomic oxygen into Pd-subsurfaces leads to SM and changes the nature of the surface significantly. These changes are demonstrated by work function (ϕ), surface potential, catalytic activity, and correlation among them. UPS results demonstrate the maximum increase in ϕ by 0.5 eV for PdPhoto-TiO2 after SM, compared to all other catalysts. XPS study shows a moderate to severe change in the oxidation states of Pd due to atomic oxygen diffusion into the subsurface layers of Pd. Kelvin probe force microscopy (KPFM) study also reveals corroborating evidence that the surface potential increases linearly with increasing temperature deployed for SM up to 523 K, followed by a marginal decrease at 573 K. The ϕ measured by KPFM and UPS shows a similar trend and correlates well with the changes in catalysis observed. Our results indicate that there is a strong correlation between surface physical and chemical properties, and ϕ changes could be considered as a global marker for chemical reactivity.

4.
Inorg Chem ; 61(1): 279-286, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34932334

ABSTRACT

The epoxide ring-opening reaction in graphene oxide (GO) by nucleophiles is a very fascinating and advanced methodology to develop novel functional material. Herewith, we report an advanced strategy for opening the epoxide ring on the rGO surface via easily an available nucleophile (Na2S), which is further functionalized with O atom to obtain four-membered rings (FMRs). The Cd coordination with the S atom puts extra stress on the FMR leading to the C-C bond cleavage of the four-membered heteroatomic rings on the rGO surface. This strategic approach leads to the fabrication of an innovative metal (II) organo-bis-[1,2]-oxathiin (MOBOT) chemical moiety (M = Cd, Zn). The MOBOT compound further shows enhanced H2 generation activity and hence is promising as a potential photocatalyst for solar hydrogen generation. This compound might also be a potential candidate for optoelectronic applications.

5.
Inorg Chem ; 61(48): 19577-19587, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36383441

ABSTRACT

In this work, we demonstrate a simple sol-gel technique to prepare metal-ion(s)-doped ceria-zirconia solid solution for efficient catalytic methane activation. The cation-depicting formula units are Ce0.80Zr0.20 (CZ), Ce0.79Zr0.20M0.01 (CZM), and Ce0.79Zr0.20M0.005M10.005 (CZMM1) (M and M1 = V, Mn, Fe, Co, and Cu), employed for undoped, mono-metal-ion-doped, and bi-metal-ion-doped solid solutions, respectively. Methane activation with Mn, Fe, Cu mono-metal-ion-doped CZ favors the C1 product, while CZCo assists C-C coupling with the formation of acetaldehyde. On the other hand, the Co- and Fe-doped bi-metal-ion combination catalyst (CZCoFe) shows significant ethanol but predominant formic acid formation. This is further promoted by the Co + V bi-metal-ion combination (CZCoV) catalyst, and it shows ethanol as the major product along with methyl hydrogen peroxide, methanol, and formic acid as minor products. An impressive ethanol yield of 93 µmol/g h with 76% selectivity obtained with the CZCoV catalyst is at par with that obtained with noble-metal-based catalysts under comparable reaction conditions. When Co and V content was increased two and four times from 0.005 to 0.01 and 0.02, ethanol yield increased at the expense of formic acid. The 213 µmol/g h ethanol yield (86% selectivity) observed with Ce0.76Zr0.20Co0.02V0.02 is probably the highest observed. The partial oxidation of CH4 in Co-based bi-metal combinations (Co + V or Co + Fe) suggests the synergistic effect of doped metal ions owing to the heterogeneous near-neighbor environment. The present results are attributed to the surface heterogeneity between the host and the dopants, which selectively promotes methane activation as well as C-C coupling. This indicates a large scope to tune the activity of partial oxidation of methane and product selectivity with different metal-ion(s) combinations.

6.
Phys Chem Chem Phys ; 22(27): 15528-15540, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32608404

ABSTRACT

The gas-phase vibrational spectra of reactive (H2 and O2) and inert gases (N2 and Ar) have been studied by near-ambient pressure (NAP) ultraviolet photoelectron spectroscopy (NAPUPS) up to 0.3 mbar pressure. The results obtained are divided into two parts and discussed. In the first part, the photoelectron spectra of monoatomic Ar and some homonuclear diatomic molecules, such as H2, O2, and N2, have been recorded by NAPUPS and the effect of pressure on their energy position has been studied. It has been demonstrated that NAPUPS could be an essential tool to determine the intermolecular or interatomic interactions. In the second part, we have evaluated the influence of different solid surfaces on the binding energy (BE) position, the pattern of the vibrational features of diatomic N2 molecules, and the first atomic levels (3p3/2 and 3p1/2) of monoatomic Ar. It has been observed that with a change in the (electronic/chemical) nature of the surface, the BE of the above features also changes and reflects the change in the work function (φ) of the material. It is to be noted that Ar is an inert/noble gas and N2 is the most stable molecule, and the above changes observed underscore that they can be employed as probe atoms/molecules to explore even the minor changes that occur on a solid surface due to a variety of reasons. Further, if the solid surface undergoes any chemical/electronic changes due to gas-solid interaction, such as oxidation/reduction, the φ of the surface changes again; this highlights the precise identification of the changes that occur under the reaction/measurement conditions. Therefore, the change in the BE of the gas-phase features can be used to determine even the minor changes in the φ of solid surfaces during the reaction or due to the reaction. The present findings have implications in probing the surface changes that occur in any surface-dependent phenomena, such as heterogeneous catalysis, electrochemistry, and materials that are predominantly controlled by surface contribution, such as layered (2D) materials, nanomaterials.

7.
Phys Chem Chem Phys ; 18(39): 27594-27602, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27711510

ABSTRACT

What is the correlation between physical properties of the surfaces (such as surface potential, electronic nature of the surface), and chemical and catalysis properties (such as chemisorption, sticking probability of surface)? An attempt has been made to explore any correlation that might exist between the physical and chemical properties of thin film surfaces. Kelvin probe microscopy (KPM) and the molecular beam (MB) methods were employed to carry out the surface potential, and oxygen adsorption and oxygen storage capacity (OSC) measurements on Ce1-xZrxO2 thin films. A sol-gel synthesis procedure and spin-coating deposition method have been applied to make continuous nanocrystalline Ce1-xZrxO2 (x = 0-1) (CZ) thin films with uniform thickness (35-50 nm); however, surface roughness and porosity inherently changes with CZ composition. MB studies of O2 adsorption on CZ reveal high OSC for Ce0.9Zr0.1O2, which also exhibits highly porous and significantly rough surface characteristics. The surface potential observed from KPM studies varied between 30 and 80 mV, with Ce-rich compositions exhibiting the highest surface potential. Surface potential shows large changes after reduction or oxidation of the CZ film demonstrating the influence of Ce3+/Ce4+ on surface potential, which is also a key to catalytic activity for ceria-based catalysts. The surface potential measured from KPM and the OSC measured from MB vary linearly and they depend on the Ce3+/Ce4+ ratio. More and detailed studies are suggested to arrive at a correlation between the physical and chemical properties of the surfaces.

8.
Anal Chem ; 86(8): 3683-7, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24601627

ABSTRACT

Valence band (VB) changes and hence electronic structure evolution was directly observed with low kinetic energy (KE) electrons at near ambient pressure (NAP) conditions with He I photon source in a custom built laboratory ambient pressure photoelectron spectrometer (Lab-APPES). Polycrystalline Cu surfaces were gradually oxidized in O2 to Cu2O, to a mixture of Cu2O + CuO, and finally to CuO between 300 and 625 K and at NAP. Typical VB features for Cu, Cu2O, and CuO were observed, and the results corroborate well with core level and Auger spectral changes. High mean free path associated with low KE electrons, very low or no inelastic scattering, and effective pumping and the design of electrostatic lens regime help to minimize the electron attenuation at NAP conditions. The present results extend the capabilities of the APPES tool to explore the in situ evolution of electronic structure of materials at NAP and high temperatures.

9.
J Phys Chem A ; 118(7): 1213-9, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24476423

ABSTRACT

MgCl2·xROH molecular adducts are extensively employed as a support material for Ziegler-Natta polyolefin catalysis. However, their structural properties are not well understood. Recently, we reported on the preparation of an isobutanol adduct, MgCl2·4(CH3)2CHCH2OH (MgiBuOH) ( Dalton Trans. 2012 , 41 , 11311 ), which is very sensitive to the preparation conditions, such as the temperature and refluxing time. For the present study, the structural properties of MgiBuOH adducts prepared under different conditions have been investigated thoroughly by solid-state NMR and nonambient XRD. Formation of two phases has been confirmed, and in situ variable temperature solid-state NMR measurements confirm the coexistence of two phases as well as the oscillation from one to another phase. It is expected that such molecular adducts could have a significant role in organic transformation reactions due to an oscillating structural component. An understanding of phase oscillation with the Mg(2+) ion as the central metal ion might shed some light toward understanding various biological and structural functions.

10.
ACS Mater Au ; 4(5): 500-511, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39280810

ABSTRACT

In the landscape of green hydrogen production, alkaline water electrolysis is a well-established, yet not-so-cost-effective, technique due to the high overpotential requirement for the oxygen evolution reaction (OER). A low-voltage approach is proposed to overcome not only the OER challenge by favorably oxidizing abundant feedstock molecules with an earth-abundant catalyst but also to reduce the energy input required for hydrogen production. This alternative process not only generates carbon-negative green H2 but also yields concurrent value-added products (VAPs), thereby maximizing economic advantages and transforming waste into valuable resources. The essence of this study lies in a novel electrocatalyst material. In the present study, unique and two-dimensional (2D) ultrathin nanosheet phosphates featuring first-row transition metals are synthesized by a one-step solvothermal method, and evaluated for the electrocatalytic glycerol oxidation reaction (GLYOR) in an alkaline medium and simultaneous H2 production. Co3(PO4)2 (CoP), Cu3(PO4)2 (CuP), and Ni3(PO4)2 (NiP) exhibit 2D sheet morphologies, while FePO4 (FeP) displays an entirely different snowflake-like morphology. The 2D nanosheet morphology provides a large surface area and a high density of active sites. As a GLYOR catalyst, CoP ultrathin (∼5 nm) nanosheets exhibit remarkably low onset potential at 1.12 V (vs RHE), outperforming that of NiP, FeP, and CuP around 1.25 V (vs RHE). CoP displays 82% selective formate production, indicating a superior capacity for C-C cleavage and concurrent oxidation; this property could be utilized to valorize larger molecules. CoP also exhibits highly sustainable electrochemical stability for a continuous 200 h GLYOR operation, yielding 6.5 L of H2 production with a 4 cm2 electrode and 98 ± 0.5% Faradaic efficiency. The present study advances our understanding of efficient GLYOR catalysts and underscores the potential of sustainable and economically viable green hydrogen production methodologies.

11.
ACS Appl Mater Interfaces ; 16(20): 26130-26141, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717844

ABSTRACT

Electrochemical glycerol oxidation reaction (GLYOR) could be a promising way to use the abundantly available glycerol for production of value-added chemicals and fuels. Completely avoiding the oxygen evolution reaction (OER) with GLYOR is an evolving strategy to reduce the overall cell potential and generate value-added chemicals and fuels on both the anode and cathode. We demonstrate the morphology-controlled palladium nanocrystals, afforded by colloidal chemistry, and their established morphology-dependent GLYOR performance. Although it is known that controlling the morphology of an electrocatalyst can modulate the activity and selectivity of the products, still it is a relatively underexplored area for many reactions, including GLYOR. Among nanocube (Pd-NC), truncated octahedron (Pd-TO), spherical and polycrystalline (Pd-PC) morphologies, the Pd-NC electrocatalyst deposited on a Ni foam exhibits the highest glycerol conversion (85%) along with 42% glyceric acid selectivity at a low applied potential of 0.6 V (vs reversible hydrogen electrode (RHE)) in 0.1 M glycerol and 1 M KOH at ambient temperature. Owing to the much favorable thermodynamics of GLYOR on the Pd-NC surface, the assembled electrolyzer requires an electricity input of only ∼3.7 kWh/m3 of H2 at a current density of 100 mA/cm2, in contrast to the requirement of ≥5 kWh/m3 of H2 with an alkaline/PEM electrolyzer. Sustainability has been successfully demonstrated at 10 and 50 mA/cm2 and up to 120 h with GLYOR in water and simulated seawater.

12.
J Nanosci Nanotechnol ; 13(4): 2682-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23763144

ABSTRACT

Disordered meso-macro porous Cu-Ce-Al2O3 nanocomposite (gamma-Al(2-x)M(x)O3 +/- y, M = Cu and or Ce) with different compositions has been synthesized. In situ templated sol-gel method has been adopted with simple EDTA ethylenediamine tetra aceticacid and ethylenediamine molecules to prepare gamma-Al(2-x)M(x)O3 +/- y, (M = Cu and or Ce). Above meso-macro porous materials were characterized by structural, spectroscopy, microscopy and textural techniques. Detailed characterization indicates that Cu2+ ions are introduced into the ceria and alumina lattice positions. Nano composite nature of the gamma-Al(2-x)M(x)O3 +/- y has been confirmed by detailed microscopy investigations. Catalytic activity of the above nanocomposite materials have been screened for environmentally important CO oxidation reaction. 30% Ce-60% Al and 10% Cu containing material shows the best activity among other meso-macroporous material with (50%) 100% CO oxidation at (107 degrees C) 145 degrees C.

13.
Chem Commun (Camb) ; 59(45): 6774-6795, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37162296

ABSTRACT

The electrochemical CO2 reduction reaction (CO2RR) to renewable fuels/chemicals is a potential approach towards addressing the carbon neutral economy. To date, a comprehensive analysis of key performance indicators, such as an intrinsic property of catalyst, reaction environment and technological advancement in the flow cell, is limited. In this study, we discuss how the design of catalyst material, electrolyte and engineering gas diffusion electrode (GDE) could affect the CO2RR in a gas-fed flow cell. Significant emphasis is given to scale-up requirements, such as promising catalysts with a partial current density of ≥100 mA cm-2 and high faradaic efficiency. Additional experimental hurdles and their potential solutions, as well as the best available protocols for data acquisition for catalyst activity evaluation, are listed. We believe this manuscript provides some insights into the making of catalysts and electrolytes in a rational manner along with the engineering of GDEs towards CO2RR.

14.
Dalton Trans ; 52(7): 2051-2061, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36692075

ABSTRACT

The co-production of hydrogen and chlorine from sea-water splitting could be a potential, sustainable and attractive route by any method. However, challenges to overcome are many, and critically, the sustainability and operating potential of the electrocatalyst are important. In this work, we report on Co-doping in the BiVO4 (Co-BV) crystal lattice and employed the same as the photoanode; Co-BV exhibits a photocurrent of 190 µA cm-2 at 1.1 V vs. RHE (the reversible hydrogen electrode) in the acidic sodium chloride solution (pH 2.3) under one sun illumination. The best-performing photoanode, with 0.05 mol% of Co doping (0.05 Co-BV), selectively produced active chlorine with 92% faradaic efficiency at 1.1 V vs. RHE by successfully suppressing the kinetically sluggish oxygen evolution reaction (OER) and the stability of the catalyst was demonstrated for up to 20 h. This is the lowest operating potential reported for the chlorine evolution reaction (CER), thus far. The overpotential required for CER with 0.05 Co-BV is lower than that of OER, which leads to selective CER at 1.1 V (vs. RHE). Co-doping into the BiVO4 lattice decreases the charge transfer resistance and enhances the CER kinetics due to its structural and electronic integration with the BV lattice. We demonstrate that Co-doping also improves the lifetime of the charge carrier and enhances the current density of CER and sustainability of the catalyst.

15.
Chem Asian J ; 18(6): e202201239, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36716268

ABSTRACT

The present study reports on the photocatalytic oxidation of butanols to butanal/butanone using thin film form of facet-dependent nano-Pd supported on commercial TiO2 under one-sun condition and demonstrates the generic nature. Pd-nanocube (PdNC (100)), Pd-truncated octahedron (PdTO (100) and (111)), polycrystalline (PdPC ), and their counterparts with half-a-monolayer Pt-coated on Pd (0.5θPt -Pd)) have been used as co-catalyst. A potentially scalable thin film form of Pd/TiO2 photocatalyst, prepared by drop-casting method, has been employed to study oxidation of n-butanol, 2-butanol, and iso-butanol to corresponding aldehyde/ketone. 100% selectivity is demonstrated to respective aldehyde/ketone with any catalyst used in the present study with varying degree of butanols conversion by NMR. 0.5θPt -PdTO /TiO2 shows the highest conversion of 2-butanol to butanone (13.6% in 4 h). Continuous 10 h of reaction with the most active 0.5θPt -PdTO /P25 catalyst demonstrates 31% conversion of 2-butanol to butanone, and catalyst recyclability has been demonstrated. The present protocol can be scalable to large scales to maximize the conversion in direct sunlight. Due to its generic nature, the current method can also be applied to many other alcohols and substrate molecules.

16.
Chem Commun (Camb) ; 58(22): 3689-3692, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35226012

ABSTRACT

Herein, a one-step hydrothermal reaction is developed to synthesize a Ni-doped ReS2 nanostructure with sulphur defects. The material exhibited excellent OER activity with a current density of 10 mA cm-2 at an overpotential of 270 mV, a low Tafel slope of 31 mV dec-1, and good long-term durability of 10 h in 1 M KOH. It shows high faradaic efficiency of 96%, benefiting from the rapid charge transfer caused by the concerted effect of Ni-in and S-out on the ReS2 nanostructure.

17.
ACS Appl Mater Interfaces ; 12(27): 30420-30430, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32531153

ABSTRACT

Pt is the best cocatalyst for hydrogen production. It is also well-known that the surface atomic layer is critical for catalysis. To minimize the Pt content as cocatalyst, herein we report on half-a-monolayer of Pt (0.5θPt) decorated on earth-abundant Ni-Cu cocatalyst, which is integrated with a quasi-artificial leaf (QuAL) device (TiO2/ZnS/CdS) and demonstrated for efficient solar hydrogen production. For the QuAL, TiO2 is sensitized with ZnS and CdS quantum dots by the SILAR method. The 0.5θPt-decorated Ni-Cu shows an onset potential of 0.05 V vs reversible hydrogen electrode for the hydrogen evolution reaction, which is almost similar to that of commercial Pt/C. Photoactivity of the present QuAL device with either bulk Pt or 0.5θPt-coated Ni-Cu cocatalyst is, surprisingly, equal. Our findings underscore that a fraction of a monolayer of Pt can enhance the activity of the cocatalyst, and it is worth exploring further for the high activity associated with atomic Pt and other noble metals.

18.
J Nanosci Nanotechnol ; 9(1): 423-32, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19441329

ABSTRACT

N,S-co-doped anatase-phase TiO2 (N,S-TiO2) nanophotocatalysts were prepared from either benzothiazoline or aminothiol with titanium isopropoxide followed by a systematic thermal decomposition. The chemical nature of S and N in N,S-TiO2 have been identified by XPS to be sulfate and NO-like, respectively. A significant band broadening and red-shift in the UV-visible absorption spectrum of N,S-TiO2 suggests a band gap reduction compared to TiO2. A maximum band-gap narrowing of 0.22 +/- 0.02 eV was observed on N,S-TiO2. Higher energy width observed on N,S-TiO, is in contrast to 0.13 eV from N-doped TiO2 indicating the sulfate-like species might play a major role in narrowing the band-gap to a higher level. It is confirmed that the oxidation of N and S to NO and SO4(2-) occurs in the final stage of preparation of N,S-TiO2, during calcination in air. It is predicted that the oxygen associated with sulfate and NO structural features could be crucial in bringing down the energy gap and red shift in optical absorption and the role of sulfur is to facilitate the above. Photocatalytic decomposition of methylene blue has been carried out on N,S-TiO2 shows higher activity than the commercial TiO2 in the visible region. However, sulfate species seems to enhance the activity of N,S-TiO2 marginally compared to N-TiO2, and possible suggestions are given to improve the same.

19.
J Nanosci Nanotechnol ; 9(1): 371-7, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19441321

ABSTRACT

A simple procedure to prepare nanocrystalline mesoporous titania (meso-TiO2) is reported without any templating agent and it possesses a high BET surface area and a large pore wall thickness (11.3 nm) than that of meso-TiO2 prepared by other methods. Nanocrystalline meso-TiO, also has been synthesized with hexadecylamine template for comparison through known procedure. The meso-TiO2 materials were characterized by X-ray diffraction, FT-IR, UV-Vis absorbance spectra, thermal analysis, SEM, HRTEM and textural properties through N2 adsorption-desorption isotherms. Spherical shape particles in a range of few hundred nanometers are obtained in the template free method. Above systematic characterization provides direct indications toward the mechanism of formation of meso-TiO2 in the template free method. A comparison of the physical and textural properties indicates a possibility of coarse-tuning of the textural characteristics of mesoporous TiO2 by adopting different preparation methods.

20.
Dalton Trans ; 48(14): 4574-4581, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30874701

ABSTRACT

Despite the great successes in the controlled fabrication of nanomaterials with specific composition and morphology, it is still challenging to have the desired control on the defect sites of catalyst materials. For unfolding the mystery of this aspect, catalytic styrene epoxidation was attempted on spinel Co3O4 with two different morphologies, namely, SNR (nanorods prepared by the solvothermal method with the (110) facet), HNR (nanorods prepared by the hydrothermal methodwith the (111) facet) and NC (nanocubes with the (110) facet) were synthesized and subjected to olefin oxidation with O2. Even without any catalyst pretreatment, all three Co3O4 catalyst systems were found to be active for selective epoxidation of styrene with O2 at ambient pressure in the liquid phase. The correlation between catalytic activity and selectivity trend suggests that the reaction is highly structure-sensitive and facile on the (110) facet. Temperature-dependent near ambient pressure X-ray photoelectron spectroscopy (NAPXPS) was carried out at 0.1 mbar O2 pressure to understand the mechanistic aspects. The distinct catalytic activity of NC (110) and SNR (110) can be attributed to the population of defect sites on the catalyst surface. NC morphology with comparatively fewer defect sites shows high activity and selectivity, suggesting that styrene oxidation on Co3O4 is structure-sensitive; however, unlike metal surfaces, fewer defects are more favourable for catalytic styrene epoxidation due to facile adsorption and activation of the substrate and O2 on Co3+ sites. The present investigations suggest that surface defects need not necessarily increase catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL