Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Reprod Biomed Online ; 48(1): 103600, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38039562

ABSTRACT

The healthcare industry is a major contributor to greenhouse gas emissions. Assisted reproductive technology is part of the larger healthcare sector, with its own heavy carbon footprint. The social, economic and environmental costs of this collective carbon footprint are becoming clearer, as is the impact on human reproductive health. Alpha Scientists in Reproductive Medicine and the International IVF Initiative collaborated to seek and formulate practical recommendations for sustainability in IVF laboratories. An international panel of experts, enthusiasts and professionals in reproductive medicine, environmental science, architecture, biorepository and law convened to discuss the topics of importance to sustainability. Recommendations were issued on how to build a culture of sustainability in the workplace, implement green design and building, use life cycle analysis to determine the environmental impact, manage cryostorage more sustainably, and understand and manage laboratory waste with prevention as a primary goal. The panel explored whether the industry supporting IVF is sustainable. An example is provided to illustrate the application of green principles to an IVF laboratory through a certification programme. The UK legislative landscape surrounding sustainability is also discussed and a few recommendations on 'Green Conferencing' are offered.


Subject(s)
Carbon Footprint , Laboratories , Humans , Reproductive Techniques, Assisted , Fertilization in Vitro
2.
Biodegradation ; 33(6): 593-607, 2022 12.
Article in English | MEDLINE | ID: mdl-35980495

ABSTRACT

2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound and is highly resistant to degradation. Most aerobic microorganisms reduce TNT to amino derivatives via formation of nitroso- and hydroxylamine intermediates. Although pathways of TNT degradation are well studied, proteomic analysis of TNT-degrading bacteria was done only for some individual Gram-negative strains. Here, we isolated a Gram-positive strain from TNT-contaminated soil, identified it as Bacillus pumilus using 16S rRNA sequencing, analyzed its growth, the level of TNT transformation, ROS production, and revealed for the first time the bacillary proteome changes at toxic concentration of TNT. The transformation of TNT at all studied concentrations (20-200 mg/L) followed the path of nitro groups reduction with the formation of 4-amino-2,6-dinitrotoluene. Hydrogen peroxide production was detected during TNT transformation. Comparative proteomic analysis of B. pumilus showed that TNT (200 mg/L) inhibited expression of 46 and induced expression of 24 proteins. Among TNT upregulated proteins are those which are responsible for the reductive pathway of xenobiotic transformation, removal of oxidative stress, DNA repair, degradation of RNA and cellular proteins. The production of ribosomal proteins, some important metabolic proteins and proteins involved in cell division are downregulated by this xenobiotic.


Subject(s)
Bacillus pumilus , Trinitrotoluene , Trinitrotoluene/metabolism , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Proteome , RNA, Ribosomal, 16S , Biodegradation, Environmental , Proteomics , Xenobiotics , Hydrogen Peroxide , Reactive Oxygen Species , Soil , Ribosomal Proteins , Hydroxylamines
3.
Genomics ; 112(1): 442-458, 2020 01.
Article in English | MEDLINE | ID: mdl-30902755

ABSTRACT

The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.


Subject(s)
Genetic Variation , Adult , Communicable Diseases/genetics , Demography , Haplotypes , Humans , INDEL Mutation , Pharmacogenetics , Phenotype , Phylogeography , Polymorphism, Single Nucleotide , Russia/ethnology , Selection, Genetic , Whole Genome Sequencing
4.
Chromosome Res ; 24(3): 309-23, 2016 09.
Article in English | MEDLINE | ID: mdl-27116673

ABSTRACT

Chromocenters are interphase nuclear landmark structures of constitutive heterochromatin. The tandem repeat (TR)-enriched parts of different chromosomes cluster together in chromocenters. There has been progress in recent years in determining the protein content of chromocenters, although it is not clear which DNA sequences underly constitutive heterochromatin apart from the TRs. The aim of the current work was to find out which DNA sequences besides TRs are involved in chromocenters' formation. Biochemically isolated chromocenters and microdissected centromeric regions were amplified by DOP-PCR, then cloned and sequenced. Alignment to Repbase, the mouse reference genome and WGS databases separated the sequences from both libraries into three groups: (1) sequences with similarity to pericentromere mouse major satellite; (2) sequences without similarity to any repetitive sequences; (3) sequences with similarity to long interspersed nuclear elements (LINEs). LINE-related sequences have a disperse pattern distribution on chromosomes predicted in silico. Selected clones were used for fluorescent in situ hybridization (FISH). The 10 clones tested hybridized to chromocenters and centromeric regions of metaphase chromosomes. These clones were used for double FISH with four known cloned TRs (satDNA, satellite DNA) and a probe specific for the sex chromosomes. The probes bind various chromocenters' regions without overlapping; so, FISH results reveal a complex chromocenter composition. We mapped 18 LINE-derived clones to the RepBase L1 records. Most of them grouped in a ∼2-kb region at the end of the second ORF and 3' untranslated region (UTR). So, even the limited number of the clones allows us to determine the region of the L1 element that is specific for heterochromatic regions. Although the L1 full-length probe did not hybridize at detectable levels to the heterochromatic region on any chromosome, the 2-kb fragment found is definitely a part of these regions. The precise LINE ∼2-kb fragment is the component of mouse and human constitutive heterochromatin enriched with TRs. The method used for amplification of the probes from two sources of the heterochromatic material uncovered the enrichment of a precise fragment of LINE within chromocenters.


Subject(s)
Genome/genetics , Heterochromatin/genetics , Long Interspersed Nucleotide Elements/genetics , Tandem Repeat Sequences/genetics , 3' Untranslated Regions/genetics , Animals , Cell Line , Cloning, Molecular , DNA Probes/genetics , DNA, Satellite/genetics , Databases, Genetic , Fibroblasts/cytology , Humans , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred C3H , Open Reading Frames/genetics , Sequence Analysis, DNA
5.
Cell Death Discov ; 9(1): 352, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749074

ABSTRACT

Lung cancer is the leading cause of cancer mortality worldwide. In recent years, the incidence of lung cancer subtype lung adenocarcinoma (LUAD) has steadily increased. Mitochondria, as a pivotal site of cell bioenergetics, metabolism, cell signaling, and cell death, are often dysregulated in lung cancer cells. Mitochondria maintenance and integrity depend on mitochondrial quality control proteins (MQCPs). During lung cancer progression, the levels of MQCPs could change and promote cancer cell adaptation to the microenvironment and stresses. Here, univariate and multivariate proportional Cox regression analyses were applied to develop a signature based on the level of MQCPs (dimeric form of BNIP3, DRP1, and SIRT3) in tumorous and non-tumorous samples of 80 patients with LUAD. The MQCP signature could be used to separate the patients with LUAD into high- and low-risk groups. Survival analysis indicated that patients in the high-risk group had dramatically shorter overall survival compared with the low-risk patients. Moreover, a nomogram combining clinicopathologic features and the MQCP signature was constructed and validated to predict 1-, 3-, and 5-year overall survival of the patients. Thus, this study presents a novel signature based on MQCPs as a reliable prognostic tool to predict overall survival for patients with LUAD.

6.
Methods Mol Biol ; 2445: 3-24, 2022.
Article in English | MEDLINE | ID: mdl-34972982

ABSTRACT

Autophagy is an intracellular self-digestive process involved in catabolic degradation of damaged proteins, and organelles, and the elimination of cellular pathogens. Initially, autophagy was considered as a prosurvival mechanism, but the following insights shed light on its prodeath function. Nowadays, autophagy is established as a crucial player in the development of various diseases through interaction with other molecular pathways within a cell. Additionally, disturbance in autophagy is one of the main pathological alterations that lead to resistance of cancer cells to treatment. These autophagy-related pathologies gave rise to the development of new therapeutic drugs. Here, we summarize the current knowledge on the autophagic role in disease pathogenesis, particularly in cancer, and the interplay between autophagy and other cell death modalities in order to combat cancer.


Subject(s)
Neoplasms , Signal Transduction , Apoptosis , Autophagy/physiology , Cell Death , Humans , Neoplasms/pathology , Organelles/metabolism , Signal Transduction/physiology
7.
Cancers (Basel) ; 14(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35205745

ABSTRACT

uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.

8.
Cancers (Basel) ; 12(11)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207677

ABSTRACT

Bcl-2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) is a pro-apoptotic BH3-only protein of the Bcl-2 family. Initially, BNIP3 was described as one of the mediators of hypoxia-induced apoptotic cell death in cardiac myocytes and neurons. Besides apoptosis, BNIP3 plays a crucial role in autophagy, metabolic pathways, and metastasis-related processes in different tumor types. Lung cancer is one of the most aggressive types of cancer, which is often diagnosed at an advanced stage. Therefore, there is still urgent demand for reliable biochemical markers for lung cancer and its efficient treatment. Mitochondria functioning and mitochondrial proteins, including BNIP3, have a strong impact on lung cancer development and progression. Here, we summarized current knowledge about the BNIP3 gene and protein features and their role in cancer progression, especially in lung cancer in order to develop new therapeutic approaches associated with BNIP3.

9.
Cell Death Differ ; 27(2): 405-419, 2020 02.
Article in English | MEDLINE | ID: mdl-31907390

ABSTRACT

The members of the Bcl-2 family are the central regulators of various cell death modalities. Some of these proteins contribute to apoptosis, while others counteract this type of programmed cell death, thus balancing cell demise and survival. A disruption of this balance leads to the development of various diseases, including cancer. Therefore, understanding the mechanisms that underlie the regulation of proteins of the Bcl-2 family is of great importance for biomedical research. Among the members of the Bcl-2 family, antiapoptotic protein Mcl-1 is characterized by a short half-life, which renders this protein highly sensitive to changes in its synthesis or degradation. Hence, the regulation of Mcl-1 is of particular scientific interest, and the study of Mcl-1 modulators could aid in the understanding of the mechanisms of disease development and the ways of their treatment. Here, we summarize the present knowledge regarding the regulation of Mcl-1, from transcription to degradation, focusing on aspects that have not yet been described in detail.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics
10.
Cell Death Dis ; 11(10): 825, 2020 10 03.
Article in English | MEDLINE | ID: mdl-33011746

ABSTRACT

Caspase-2 is a unique and conservative cysteine protease which plays an important role in several cellular processes including apoptotic cell death. Although the molecular mechanisms of its activation remain largely unclear, a major role belongs to the architecture of the caspase-2 active center. We demonstrate that the substitution of the putative phosphorylation site of caspase-2, Serine-384 to Alanine, blocks caspase-2 processing and decreases its enzymatic activity. Strikingly, in silico analysis using molecular dynamics simulations has shown that Serine-384 is crucially involved in interactions within the caspase-2 active center. It stabilizes Arginine-378, which forms a crucial hydrogen bond with the aspartate residue of a substrate. Hence, Serine-384 is essential for supporting a proper architecture of the active center of caspase-2. Moreover, molecular modeling strongly proved steric inaccessibility of Ser-384 to be phosphorylated. Importantly, a multiple alignment has demonstrated that both Serine-384 and Arg-378 residues are highly conservative across all members of caspase family, which allows us to suggest that this diade is indispensable for caspase processing and activity. Spontaneous mutations in this diade might influence oncosuppressive function of caspases, in particular of caspase-2. Likewise, the mutation of Ser-384 is associated with the development of lung squamous cell carcinoma and adenocarcinoma. Taken together, we have uncovered a central feature of the caspase-2 activation mechanism which is crucial for the regulation of its signaling network.


Subject(s)
Apoptosis/genetics , Caspase 2/genetics , Cysteine Endopeptidases/genetics , Serine/metabolism , Adenocarcinoma/genetics , Binding Sites , Caspase 2/metabolism , Caspase 9/metabolism , Cysteine Endopeptidases/metabolism , Humans , Mutation, Missense/genetics , Serine/genetics
11.
Front Cell Dev Biol ; 7: 355, 2019.
Article in English | MEDLINE | ID: mdl-31921862

ABSTRACT

Mitochondria in addition to be a main cellular power station, are involved in the regulation of many physiological processes, such as generation of reactive oxygen species, metabolite production and the maintenance of the intracellular Ca2+ homeostasis. Almost 100 years ago Otto Warburg presented evidence for the role of mitochondria in the development of cancer. During the past 20 years mitochondrial involvement in programmed cell death regulation has been clarified. Moreover, it has been shown that mitochondria may act as a switchboard between various cell death modalities. Recently, accumulated data have pointed to the role of mitochondria in the metastatic dissemination of cancer cells. Here we summarize the modern knowledge concerning the contribution of mitochondria to the invasion and dissemination of tumor cells and the possible mechanisms behind that and attempts to target metastatic cancers involving mitochondria.

12.
PLoS One ; 11(9): e0161256, 2016.
Article in English | MEDLINE | ID: mdl-27583792

ABSTRACT

Сarcinoembryonic antigen (CEA, CEACAM5, CD66) is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8) and CEA negative (MIP 101) colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated). They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis.


Subject(s)
Carcinoembryonic Antigen/metabolism , Colorectal Neoplasms/genetics , Genome-Wide Association Study , Sequence Analysis, RNA/methods , Cell Line, Tumor , Colorectal Neoplasms/immunology , Gene Expression Profiling , Humans , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL