Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters

Publication year range
1.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314701

ABSTRACT

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Subject(s)
Cerebrum/pathology , ELAV-Like Protein 4/genetics , Glutamic Acid/metabolism , Mutation/genetics , Neurons/pathology , Organoids/metabolism , RNA Splicing/genetics , tau Proteins/genetics , Autophagy/drug effects , Autophagy/genetics , Biomarkers/metabolism , Body Patterning/drug effects , Body Patterning/genetics , Cell Death/drug effects , Cell Line , Humans , Hydrazones/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Organoids/ultrastructure , Phosphorylation/drug effects , Pyrimidines/pharmacology , RNA Splicing/drug effects , Signal Transduction/drug effects , Stress Granules/drug effects , Stress Granules/metabolism , Synapses/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
2.
Cell ; 174(5): 1200-1215.e20, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30100187

ABSTRACT

Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.


Subject(s)
E2F1 Transcription Factor/metabolism , Membrane Glycoproteins/metabolism , Nuclear Pore/physiology , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Carcinogenesis , Cell Nucleus/metabolism , Cell Proliferation , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Nuclear Envelope , Nuclear Pore Complex Proteins , Signal Transduction
3.
Mov Disord ; 38(12): 2163-2172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37670483

ABSTRACT

BACKGROUND: Vacuolar protein sorting 13 homolog A (VPS13A) disease, historically known as chorea-acanthocytosis, is a rare neurodegenerative disorder caused by biallelic mutations in VPS13A, usually resulting in reduced or absent levels of its protein product, VPS13A. VPS13A localizes to contact sites between subcellular organelles, consistent with its recently identified role in lipid transfer between membranes. Mutations are associated with neuronal loss in the striatum, most prominently in the caudate nucleus, and associated marked astrogliosis. There are no other known disease-specific cellular changes (eg, protein aggregation), but autopsy reports to date have been limited, often lacking genetic or biochemical diagnostic confirmation. OBJECTIVE: The goal of this study was to characterize neuropathological findings in the brains of seven patients with VPS13A disease (chorea-acanthocytosis). METHODS: In this study, we collected brain tissues and clinical data from seven cases of VPS13A for neuropathological analysis. The clinical diagnosis was confirmed by the presence of VPS13A mutations and/or immunoblot showing the loss or reduction of VPS13A protein. Tissues underwent routine, special, and immunohistochemical staining focused on neurodegeneration. Electron microscopy was performed in one case. RESULTS: Gross examination showed severe striatal atrophy. Microscopically, there was neuronal loss and astrogliosis in affected regions. Luxol fast blue staining showed variable lipid accumulation with diverse morphology, which was further characterized by electron microscopy. In some cases, rare degenerating p62- and ubiquitin-positive cells were present in affected regions. Calcifications were present in four cases, being extensive in one. CONCLUSIONS: We present the largest autopsy series of biochemically and genetically confirmed VPS13A disease and identify novel histopathological findings implicating abnormal lipid accumulation. © 2023 International Parkinson and Movement Disorder Society.


Subject(s)
Neuroacanthocytosis , Humans , Autopsy , Caudate Nucleus/metabolism , Gliosis , Lipids , Neuroacanthocytosis/genetics , Neuroacanthocytosis/diagnosis , Neuroacanthocytosis/pathology , Vesicular Transport Proteins/genetics
4.
BMC Public Health ; 23(1): 657, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024865

ABSTRACT

BACKGROUND: The Girinka program in Rwanda has contributed to an increase in milk production, as well as to reduced malnutrition and increased incomes. But dairy products can be hazardous to health, potentially transmitting diseases such as bovine brucellosis, tuberculosis, and cause diarrhea. We analyzed the burden of foodborne disease due to consumption of raw milk and other dairy products in Rwanda to support the development of policy options for the improvement of the quality and safety of milk. METHODS: Disease burden data for five pathogens (Campylobacter spp., nontyphoidal Salmonella enterica, Cryptosporidium spp., Brucella spp., and Mycobacterium bovis) were extracted from the 2010 WHO Foodborne Disease Burden Epidemiology Reference Group (FERG) database and merged with data of the proportion of foodborne disease attributable to consuming dairy products from FERG and a separately published Structured Expert Elicitation study to generate estimates of the uncertainty distributions of the disease burden by Monte Carlo simulation. RESULTS: According to WHO, the foodborne disease burden (all foods) of these five pathogens in Rwanda in 2010 was like or lower than in the Africa E subregion as defined by FERG. There were 57,500 illnesses occurring in Rwanda owing to consumption of dairy products, 55 deaths and 3,870 Disability Adjusted Life Years (DALYs) causing a cost-of-illness of $3.2 million. 44% of the burden (in DALYs) was attributed to drinking raw milk and sizeable proportions were also attributed to traditionally (16-23%) or industrially (6-22%) fermented milk. More recent data are not available, but the burden (in DALYs) of tuberculosis and diarrheal disease by all causes in Rwanda has declined between 2010 and 2019 by 33% and 46%, respectively. CONCLUSION: This is the first study examining the WHO estimates of the burden of foodborne disease on a national level in Rwanda. Transitioning from consuming raw to processed milk (fermented, heat treated or otherwise) may prevent a considerable disease burden and cost-of-illness, but the full benefits will only be achieved if there is a simultaneous improvement of pathogen inactivation during processing, and prevention of recontamination of processed products.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Foodborne Diseases , Animals , Cattle , Humans , Rwanda/epidemiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Milk/microbiology , Cost of Illness
5.
Kidney Int ; 102(2): 293-306, 2022 08.
Article in English | MEDLINE | ID: mdl-35469894

ABSTRACT

Recent epidemiological studies suggest that some patients with diabetes progress to kidney failure without significant albuminuria and glomerular injury, suggesting a critical role of kidney tubular epithelial cell (TEC) injury in diabetic kidney disease (DKD) progression. However, the major risk factors contributing to TEC injury and progression in DKD remain unclear. We previously showed that expression of endoplasmic reticulum-resident protein Reticulon-1A (RTN1A) increased in human DKD, and the increased RTN1A expression promoted TEC injury through endoplasmic reticulum (ER) stress response. Here, we show that TEC-specific RTN1A overexpression worsened DKD in mice, evidenced by enhanced tubular injury, tubulointerstitial fibrosis, and kidney function decline. But RTN1A overexpression did not exacerbate diabetes-induced glomerular injury or albuminuria. Notably, RTN1A overexpression worsened both ER stress and mitochondrial dysfunction in TECs under diabetic conditions by regulation of ER-mitochondria contacts. Mechanistically, ER-bound RTN1A interacted with mitochondrial hexokinase-1 and the voltage-dependent anion channel-1 (VDAC1), interfering with their association. This disengagement of VDAC1 from hexokinase-1 resulted in activation of apoptotic and inflammasome pathways, leading to TEC injury and loss. Thus, our observations highlight the importance of ER-mitochondrial crosstalk in TEC injury and the salient role of RTN1A-mediated ER-mitochondrial contact regulation in DKD progression.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Endoplasmic Reticulum , Mitochondria , Nerve Tissue Proteins , Albuminuria/metabolism , Animals , Apoptosis , Diabetes Mellitus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Hexokinase/metabolism , Humans , Mice , Mitochondria/metabolism , Nerve Tissue Proteins/genetics
6.
Gastroenterology ; 160(7): 2435-2450.e34, 2021 06.
Article in English | MEDLINE | ID: mdl-33676971

ABSTRACT

BACKGROUND & AIMS: Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of COVID-19, we investigated intestinal infection with SARS-CoV-2, its effect on pathogenesis, and clinical significance. METHODS: Human intestinal biopsy tissues were obtained from patients with COVID-19 (n = 19) and uninfected control individuals (n = 10) for microscopic examination, cytometry by time of flight analyses, and RNA sequencing. Additionally, disease severity and mortality were examined in patients with and without GI symptoms in 2 large, independent cohorts of hospitalized patients in the United States (N = 634) and Europe (N = 287) using multivariate logistic regressions. RESULTS: COVID-19 case patients and control individuals in the biopsy cohort were comparable for age, sex, rates of hospitalization, and relevant comorbid conditions. SARS-CoV-2 was detected in small intestinal epithelial cells by immunofluorescence staining or electron microscopy in 15 of 17 patients studied. High-dimensional analyses of GI tissues showed low levels of inflammation, including down-regulation of key inflammatory genes including IFNG, CXCL8, CXCL2, and IL1B and reduced frequencies of proinflammatory dendritic cells compared with control individuals. Consistent with these findings, we found a significant reduction in disease severity and mortality in patients presenting with GI symptoms that was independent of sex, age, and comorbid illnesses and despite similar nasopharyngeal SARS-CoV-2 viral loads. Furthermore, there was reduced levels of key inflammatory proteins in circulation in patients with GI symptoms. CONCLUSIONS: These data highlight the absence of a proinflammatory response in the GI tract despite detection of SARS-CoV-2. In parallel, reduced mortality in patients with COVID-19 presenting with GI symptoms was observed. A potential role of the GI tract in attenuating SARS-CoV-2-associated inflammation needs to be further examined.


Subject(s)
COVID-19/virology , Gastrointestinal Diseases/virology , Immunity, Mucosal , Intestinal Mucosa/virology , SARS-CoV-2/pathogenicity , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/immunology , COVID-19/mortality , Case-Control Studies , Cells, Cultured , Cytokines/blood , Female , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/immunology , Gastrointestinal Diseases/mortality , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Intestinal Mucosa/immunology , Italy , Male , Middle Aged , New York City , Prognosis , Risk Assessment , Risk Factors , SARS-CoV-2/immunology , Viral Load
7.
Mod Pathol ; 34(8): 1456-1467, 2021 08.
Article in English | MEDLINE | ID: mdl-33795830

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated clinical syndrome COVID-19 are causing overwhelming morbidity and mortality around the globe and disproportionately affected New York City between March and May 2020. Here, we report on the first 100 COVID-19-positive autopsies performed at the Mount Sinai Hospital in New York City. Autopsies revealed large pulmonary emboli in six cases. Diffuse alveolar damage was present in over 90% of cases. We also report microthrombi in multiple organ systems including the brain, as well as hemophagocytosis. We additionally provide electron microscopic evidence of the presence of the virus in our samples. Laboratory results of our COVID-19 cohort disclose elevated inflammatory markers, abnormal coagulation values, and elevated cytokines IL-6, IL-8, and TNFα. Our autopsy series of COVID-19-positive patients reveals that this disease, often conceptualized as a primarily respiratory viral illness, has widespread effects in the body including hypercoagulability, a hyperinflammatory state, and endothelial dysfunction. Targeting of these multisystemic pathways could lead to new treatment avenues as well as combination therapies against SARS-CoV-2 infection.


Subject(s)
COVID-19/physiopathology , Lung/physiopathology , Pulmonary Embolism/physiopathology , Adult , Aged , Aged, 80 and over , Autopsy , Blood Coagulation , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Cause of Death , Cytokines/blood , Female , Host-Pathogen Interactions , Humans , Inflammation Mediators/blood , Lung/pathology , Lung/virology , Male , Middle Aged , New York City , Pulmonary Embolism/blood , Pulmonary Embolism/pathology , Pulmonary Embolism/virology , SARS-CoV-2/pathogenicity
8.
J Am Soc Nephrol ; 31(10): 2372-2391, 2020 10.
Article in English | MEDLINE | ID: mdl-32737144

ABSTRACT

BACKGROUND: Maintenance of the intricate interdigitating morphology of podocytes is crucial for glomerular filtration. One of the key aspects of specialized podocyte morphology is the segregation and organization of distinct cytoskeletal filaments into different subcellular components, for which the exact mechanisms remain poorly understood. METHODS: Cells from rats, mice, and humans were used to describe the cytoskeletal configuration underlying podocyte structure. Screening the time-dependent proteomic changes in the rat puromycin aminonucleoside-induced nephropathy model correlated the actin-binding protein LIM-nebulette strongly with glomerular function. Single-cell RNA sequencing and immunogold labeling were used to determine Nebl expression specificity in podocytes. Automated high-content imaging, super-resolution microscopy, atomic force microscopy (AFM), live-cell imaging of calcium, and measurement of motility and adhesion dynamics characterized the physiologic role of LIM-nebulette in podocytes. RESULTS: Nebl knockout mice have increased susceptibility to adriamycin-induced nephropathy and display morphologic, cytoskeletal, and focal adhesion abnormalities with altered calcium dynamics, motility, and Rho GTPase activity. LIM-nebulette expression is decreased in diabetic nephropathy and FSGS patients at both the transcript and protein level. In mice, rats, and humans, LIM-nebulette expression is localized to primary, secondary, and tertiary processes of podocytes, where it colocalizes with focal adhesions as well as with vimentin fibers. LIM-nebulette shRNA knockdown in immortalized human podocytes leads to dysregulation of vimentin filament organization and reduced cellular elasticity as measured by AFM indentation. CONCLUSIONS: LIM-nebulette is a multifunctional cytoskeletal protein that is critical in the maintenance of podocyte structural integrity through active reorganization of focal adhesions, the actin cytoskeleton, and intermediate filaments.


Subject(s)
Actins/physiology , Intermediate Filaments/physiology , Kidney Diseases/pathology , Kidney Glomerulus/pathology , Podocytes/pathology , Vimentin/physiology , Animals , Cell Culture Techniques , Cytoskeletal Proteins/physiology , Humans , Kidney Diseases/etiology , LIM Domain Proteins/physiology , Mice , Rats
9.
J Cell Mol Med ; 24(13): 7214-7227, 2020 07.
Article in English | MEDLINE | ID: mdl-32485073

ABSTRACT

Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR-676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR-676 as a new reference control for the EV miR studies.


Subject(s)
Extracellular Vesicles/genetics , Gene Expression Profiling , Heart Failure/genetics , MicroRNAs/genetics , Animals , Down-Regulation/genetics , Extracellular Vesicles/metabolism , Extracellular Vesicles/ultrastructure , Male , Mice, Inbred C57BL , MicroRNAs/metabolism , Proteomics , Reproducibility of Results , Up-Regulation/genetics
10.
J Med Virol ; 92(7): 699-702, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32314810

ABSTRACT

Neurologic sequelae can be devastating complications of respiratory viral infections. We report the presence of virus in neural and capillary endothelial cells in frontal lobe tissue obtained at postmortem examination from a patient infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Our observations of virus in neural tissue, in conjunction with clinical correlates of worsening neurologic symptoms, pave the way to a closer understanding of the pathogenic mechanisms underlying central nervous system involvement by SARS-CoV-2.


Subject(s)
Ageusia/diagnosis , Ataxia/diagnosis , Betacoronavirus/pathogenicity , Coronavirus Infections/diagnosis , Olfaction Disorders/diagnosis , Pneumonia, Viral/diagnosis , Seizures/diagnosis , Aged , Ageusia/complications , Ageusia/physiopathology , Ageusia/virology , Ataxia/complications , Ataxia/physiopathology , Ataxia/virology , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Endothelial Cells/pathology , Endothelial Cells/virology , Fatal Outcome , Frontal Lobe/blood supply , Frontal Lobe/pathology , Frontal Lobe/virology , Hospitalization , Humans , Lung/blood supply , Lung/pathology , Lung/virology , Male , Neurons/pathology , Neurons/virology , Olfaction Disorders/complications , Olfaction Disorders/physiopathology , Olfaction Disorders/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Seizures/complications , Seizures/physiopathology , Seizures/virology
11.
Eur Heart J ; 40(12): 967-978, 2019 03 21.
Article in English | MEDLINE | ID: mdl-29668883

ABSTRACT

AIMS: Myocardial fibrosis is associated with profound changes in ventricular architecture and geometry, resulting in diminished cardiac function. There is currently no information on the role of the delta-like homologue 1 (Dlk1) in the regulation of the fibrotic response. Here, we investigated whether Dlk1 is involved in cardiac fibroblast-to-myofibroblast differentiation and regulates myocardial fibrosis and explored the molecular mechanism underpinning its effects in this process. METHODS AND RESULTS: Using Dlk1-knockout mice and adenoviral gene delivery, we demonstrate that overexpression of Dlk1 in cardio-fibroblasts resulted in inhibition of fibroblast proliferation and differentiation into myofibroblasts. This process is mediated by TGF-ß1 signalling, since isolated fibroblasts lacking Dlk1 exhibited a higher activation of the TGF-ß1/Smad-3 pathway at baseline, leading to an earlier acquisition of a myofibroblast phenotype. Likewise, Dlk1-null mice displayed increased TGF-ß1/Smad3 cardiac activity, resulting in infiltration/accumulation of myofibroblasts, induction and deposition of extra-domain A-fibronectin isoform and collagen, and activation of pro-fibrotic markers. Furthermore, these profibrotic events were associated with disrupted myofibril integrity, myocyte hypertrophy, and cardiac dysfunction. Interestingly, Dlk1 expression was down-regulated in ischaemic human and porcine heart tissues. Mechanistically, miR-370 mediated Dlk1's regulation of cardiac fibroblast-myofibroblast differentiation by directly targeting TGFß-R2/Smad-3 signalling, while the Dlk1 canonical target, Notch pathway, does not seem to play a role in this process. CONCLUSION: These findings are the first to demonstrate an inhibitory role of Dlk1 of cardiac fibroblast-to-myofibroblast differentiation by interfering with TGFß/Smad-3 signalling in the myocardium. Given the deleterious effects of continuous activation of this pathway, we propose Dlk1 as a new potential candidate for therapy in cases where aberrant TGFß signalling leads to chronic fibrosis.


Subject(s)
Calcium-Binding Proteins/genetics , Fibroblasts/metabolism , Fibrosis/genetics , Myocardium/pathology , Myofibroblasts/metabolism , Animals , Cell Differentiation , Down-Regulation , Humans , Male , Mice , Mice, Knockout , MicroRNAs/metabolism , Smad3 Protein/genetics , Swine , Transforming Growth Factor beta1/genetics
12.
Development ; 143(12): 2160-71, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27122169

ABSTRACT

Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling.


Subject(s)
Cilia/metabolism , Epithelium, Corneal/metabolism , Homeostasis , Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Signal Transduction , Animals , Animals, Newborn , Cell Movement , Cell Proliferation , Cilia/ultrastructure , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Epithelium, Corneal/ultrastructure , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Tumor Suppressor Proteins/metabolism , Wound Healing
13.
Transfusion ; 59(12): 3698-3713, 2019 12.
Article in English | MEDLINE | ID: mdl-31802511

ABSTRACT

BACKGROUND: Platelet (PLT) transfusions are the most effective treatments for patients with thrombocytopenia. The growing demand for PLT transfusion products is compounded by a limited supply due to dependency on volunteer donors, a short shelf-life, risk of contaminating pathogens, and alloimmunization. This study provides preclinical evidence that a third-party, cryopreservable source of PLT-generating cells has the potential to complement presently available PLT transfusion products. STUDY DESIGN AND METHODS: CD34+ hematopoietic stem/progenitor cells derived from umbilical cord blood (UCB) units were used in a simple and efficient culture system to generate a cell product consisting of megakaryocytes (MKs) at different stages of development. The cultures thus generated were evaluated ex vivo and in vivo before and after cryopreservation. RESULTS: We generated a megakaryocytic cell product that can be cryopreserved without altering its phenotypical and functional capabilities. The infusion of such a product, either fresh or cryopreserved, into immune-deficient mice led to production of functional human PLTs which were observed within a week after infusion and persisted for 8 weeks, orders of magnitude longer than that observed after the infusion of traditional PLT transfusion products. The sustained human PLT engraftment was accompanied by a robust presence of human cells in the bone marrow (BM), spleen, and lungs of recipient mice. CONCLUSION: This is a proof-of-principle study demonstrating the creation of a cryopreservable megakaryocytic cell product which releases functional PLTs in vivo. Clinical development of such a product is currently being pursued for the treatment of thrombocytopenia in patients with hematological malignancies.


Subject(s)
Blood Platelets/metabolism , Cryopreservation , Megakaryocytes/cytology , Platelet Transfusion/methods , Animals , Antigens, CD34/metabolism , Cells, Cultured , Female , Fetal Blood/cytology , Hematopoietic Stem Cells/cytology , Mice , Thrombocytopenia/therapy
14.
J Biol Chem ; 292(51): 21137-21148, 2017 12 22.
Article in English | MEDLINE | ID: mdl-28982981

ABSTRACT

Kidney podocytes represent a key constituent of the glomerular filtration barrier. Identifying the molecular mechanisms of podocyte injury and survival is important for better understanding and management of kidney diseases. KIBRA (kidney brain protein), an upstream regulator of the Hippo signaling pathway encoded by the Wwc1 gene, shares the pro-injury properties of its putative binding partner dendrin and antagonizes the pro-survival signaling of the downstream Hippo pathway effector YAP (Yes-associated protein) in Drosophila and MCF10A cells. We recently identified YAP as an essential component of the glomerular filtration barrier that promotes podocyte survival by inhibiting dendrin pro-apoptotic function. Despite these recent advances, the signaling pathways that mediate podocyte injury remain poorly understood. Here we tested the hypothesis that, similar to its role in other model systems, KIBRA promotes podocyte injury. We found increased expression of KIBRA and phosphorylated YAP protein in glomeruli of patients with biopsy-proven focal segmental glomerulosclerosis (FSGS). KIBRA/WWc1 overexpression in murine podocytes promoted LATS kinase phosphorylation, leading to subsequent YAP Ser-127 phosphorylation, YAP cytoplasmic sequestration, and reduction in YAP target gene expression. Functionally, KIBRA overexpression induced significant morphological changes in podocytes, including disruption of the actin cytoskeletal architecture and reduction of focal adhesion size and number, all of which were rescued by subsequent YAP overexpression. Conversely, constitutive KIBRA knockout mice displayed reduced phosphorylated YAP and increased YAP expression at baseline. These mice were protected from acute podocyte foot process effacement following protamine sulfate perfusion. KIBRA knockdown podocytes were also protected against protamine-induced injury. These findings suggest an important role for KIBRA in the pathogenesis of podocyte injury and the progression of proteinuric kidney disease.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Podocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Biopsy , Female , Gene Expression Regulation , Glomerulosclerosis, Focal Segmental/enzymology , Glomerulosclerosis, Focal Segmental/pathology , HEK293 Cells , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphorylation , Podocytes/pathology , Podocytes/ultrastructure , Protein Processing, Post-Translational , RNA Interference , Serine/metabolism , Transcription Factors , YAP-Signaling Proteins
15.
J Virol ; 91(2)2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27847357

ABSTRACT

Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE: This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses.


Subject(s)
CD4-Positive T-Lymphocytes/ultrastructure , CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , HIV-1/ultrastructure , Host-Pathogen Interactions , Humans , Virion/physiology , Virus Internalization , Virus Replication , Virus Uncoating
16.
Anesth Analg ; 125(2): 403-412, 2017 08.
Article in English | MEDLINE | ID: mdl-28640782

ABSTRACT

Venous thromboembolism (VTE) is a significant problem in the perioperative period, increasing patient morbidity, mortality, and health care costs. It is also considered the most preventable of the major postoperative complications. Despite widespread adoption of prophylaxis guidelines, it appears that morbidity from the disease has not substantially changed within the past 2 decades. It is becoming clear that current prophylaxis efforts are not sufficient. Using more potent anticoagulants may decrease the incidence of VTE, but increase the risk for bleeding and infection. Much has been learned about the pathophysiology of venous thrombogenesis in recent years. Beyond the "traditional coagulation cascade," which anticoagulants modulate, there is a growing appreciation for the roles of tissue factor, monocytes, neutrophils, neutrophil extracellular traps, microvesicles, and platelets in thrombus initiation and propagation. These recent studies explain to some degree why aspirin appears to be remarkably effective in preventing thrombus propagation. Endothelial dysfunction, traditionally thought of as a risk factor for arterial thrombosis, plays an important role within the cusps of venous valves, a unique environment where the majority of venous thrombi originate. This suggests a role for newer treatment modalities such as statins. Not all patients have an equal likelihood of experiencing a VTE, even when undergoing high-risk procedures, and better tools are required to accurately predict VTE risk. Only then will we be able to effectively individualize prophylaxis by balancing the risks for VTE against the risks associated with treatment. Given the different cell types and pathways involved in thrombogenesis, it is likely that multimodal treatment regimens will be more effective, enabling the use of lower and safer doses of hemostatic modulating therapies such as anticoagulants, antithrombotics, and antiplatelet medications.


Subject(s)
Anticoagulants/adverse effects , Hemorrhage/chemically induced , Perioperative Period , Pulmonary Embolism/diagnosis , Venous Thromboembolism/diagnosis , Anticoagulants/administration & dosage , Anticoagulants/therapeutic use , Aspirin/administration & dosage , Fibrinolytic Agents/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hypoxia , Incidence , Lidocaine/administration & dosage , Platelet Aggregation Inhibitors/therapeutic use , Postoperative Complications/epidemiology , Pulmonary Embolism/complications , Risk Assessment , Risk Factors , Thrombosis/drug therapy , Venous Thromboembolism/complications
17.
Proc Natl Acad Sci U S A ; 111(3): 1078-83, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24395808

ABSTRACT

Therapeutic and diagnostic nanomaterials are being intensely studied for several diseases, including cancer and atherosclerosis. However, the exact mechanism by which nanomedicines accumulate at targeted sites remains a topic of investigation, especially in the context of atherosclerotic disease. Models to accurately predict transvascular permeation of nanomedicines are needed to aid in design optimization. Here we show that an endothelialized microchip with controllable permeability can be used to probe nanoparticle translocation across an endothelial cell layer. To validate our in vitro model, we studied nanoparticle translocation in an in vivo rabbit model of atherosclerosis using a variety of preclinical and clinical imaging methods. Our results reveal that the translocation of lipid-polymer hybrid nanoparticles across the atherosclerotic endothelium is dependent on microvascular permeability. These results were mimicked with our microfluidic chip, demonstrating the potential utility of the model system.


Subject(s)
Atherosclerosis/physiopathology , Drug Delivery Systems , Endothelium/metabolism , Metal Nanoparticles/chemistry , Animals , Atherosclerosis/drug therapy , Disease Models, Animal , Gold/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Magnetic Resonance Imaging , Male , Microcirculation , Microfluidics , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Models, Theoretical , Permeability , Plaque, Atherosclerotic , Rabbits , Shear Strength
18.
Mol Med ; 21: 487-95, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26062020

ABSTRACT

Acute intermittent porphyria (AIP) is an autosomal-dominant hepatic disorder caused by the half-normal activity of hydroxymethylbilane (HMB) synthase. Symptomatic individuals experience life-threatening acute neurovisceral attacks that are precipitated by factors that induce the hepatic expression of 5-aminolevulinic acid synthase 1 (ALAS1), resulting in the marked accumulation of the putative neurotoxic porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG). Here, we provide the first detailed description of the biochemical and pathologic alterations in the explanted liver of an AIP patient who underwent orthotopic liver transplantation (OLT) due to untreatable and debilitating chronic attacks. After OLT, the recipient's plasma and urinary ALA and PBG rapidly normalized, and her attacks immediately stopped. In the explanted liver, (a) ALAS1 mRNA and activity were elevated approximately ~3- and 5-fold, and ALA and PBG concentrations were increased ~3- and 1,760-fold, respectively; (b) uroporphyrin III concentration was elevated; (c) microsomal heme content was sufficient, and representative cytochrome P450 activities were essentially normal; (d) HMB synthase activity was approximately half-normal (~42%); (e) iron concentration was slightly elevated; and (f) heme oxygenase I mRNA was increased approximately three-fold. Notable pathologic findings included nodular regenerative hyperplasia, previously not reported in AIP livers, and minimal iron deposition, despite the large number of hemin infusions received before OLT. These findings suggest that the neurovisceral symptoms of AIP are not associated with generalized hepatic heme deficiency and support the neurotoxicity of ALA and/or PBG. Additionally, they indicate that substrate inhibition of hepatic HMB synthase activity by PBG is not a pathogenic mechanism in acute attacks.


Subject(s)
5-Aminolevulinate Synthetase/genetics , Hydroxymethylbilane Synthase/biosynthesis , Liver/metabolism , Porphyria, Acute Intermittent/genetics , 5-Aminolevulinate Synthetase/biosynthesis , Adult , Aminolevulinic Acid/blood , Aminolevulinic Acid/urine , Female , Heme/metabolism , Humans , Hydroxymethylbilane Synthase/antagonists & inhibitors , Liver/pathology , Liver Transplantation , Porphobilinogen/blood , Porphobilinogen/urine , Porphyria, Acute Intermittent/enzymology , Porphyria, Acute Intermittent/pathology , RNA, Messenger/biosynthesis , Uroporphyrins/metabolism
19.
FASEB J ; 28(2): 644-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24174427

ABSTRACT

Cardiac experimental biology and translational research would benefit from an in vitro surrogate for human heart muscle. This study investigated structural and functional properties and interventional responses of human engineered cardiac tissues (hECTs) compared to human myocardium. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs, >90% troponin-positive) were mixed with collagen and cultured on force-sensing elastomer devices. hECTs resembled trabecular muscle and beat spontaneously (1.18 ± 0.48 Hz). Microstructural features and mRNA expression of cardiac-specific genes (α-MHC, SERCA2a, and ACTC1) were comparable to human myocardium. Optical mapping revealed cardiac refractoriness with loss of 1:1 capture above 3 Hz, and cycle length dependence of the action potential duration, recapitulating key features of cardiac electrophysiology. hECTs reconstituted the Frank-Starling mechanism, generating an average maximum twitch stress of 660 µN/mm(2) at Lmax, approaching values in newborn human myocardium. Dose-response curves followed exponential pharmacodynamics models for calcium chloride (EC50 1.8 mM) and verapamil (IC50 0.61 µM); isoproterenol elicited a positive chronotropic but negligible inotropic response, suggesting sarcoplasmic reticulum immaturity. hECTs were amenable to gene transfer, demonstrated by successful transduction with Ad.GFP. Such 3-D hECTs recapitulate an early developmental stage of human myocardium and promise to offer an alternative preclinical model for cardiology research.


Subject(s)
Myocardium/cytology , Tissue Engineering/methods , Cell Line , Electrophysiology , Humans
20.
Anesth Analg ; 120(4): 877-87, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25790211

ABSTRACT

The role of the anesthesiologist in reducing the incidence of surgical-site infections by the administration of prophylactic parenteral beta-lactam antibiotics is reviewed. Suggestions are made with regard to timing, dosing, and method of administration of these drugs to potentially reduce the risk of surgical-site infection.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/methods , Bacterial Infections/prevention & control , beta-Lactams/therapeutic use , Anti-Bacterial Agents/administration & dosage , Biofilms , Humans , Perioperative Care , Skin/microbiology , Surgical Wound Infection/prevention & control , Time Factors , Tourniquets , beta-Lactams/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL