Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Publication year range
1.
Eur J Pediatr ; 183(1): 323-334, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882822

ABSTRACT

Invasive bacterial disease is associated with significant morbidity and mortality. In winter 2022, there was an apparent increased rate of invasive bacterial disease compared to preceding years. Cross-site retrospective analysis of the three Children's Health Ireland (CHI) hospitals looking at children admitted between 1st October 2022-31st December 2022 (Q4) with community-acquired invasive bacterial disease, defined as an abscess in a normally sterile site in the head, neck and chest or isolation or PCR detection of Streptococcus pneumoniae, Neisseria meningitidis, Streptococcus pyogenes (Group A streptococcus) or Haemophilus influenzae from a normally sterile site. Case numbers were compared to Q4 in each of 2018-2021. Eighty-two children met the case definition in Q4 2022 vs 97 (Q4 2018-2021). In 2022, 42/82 (51%) were female, median age 3.75 years (1.5-8.25 years). Only 2 (2%) were immunosuppressed and 2 others (2%) had underlying neurodisability. Fifty (61%) were admitted on second or subsequent presentation to a healthcare setting. Fifty-six (68%) had an abscess in a sterile site. Bloodstream infection (positive blood culture or PCR: 24 (29%)) was the most common site of infection, followed by neck 22 (27%) and intracranial 12 (15%). Group A streptococcus (GAS) 27 (33%) was the most common organism isolated. Seven cases (9%) died in 2022 compared to 2 patients (2%) from 2018 to 2021 (p < 0.05). More children had Paediatric Overall Performance Category (POPC) scores > 1 in 2022 than 2018-2021 (p = 0.003).  Conclusion: Invasive bacterial diseases increased in Q4 2022 with higher morbidity and mortality than in the preceding 4 years. Group A streptococcal infection was the most significant organism in 2022. What is known: • Invasive bacterial disease is the leading cause of childhood mortality globally. • There was an increase in cases of invasive Group A streptococcus infections reported in many countries (including Ireland) during the winter of 2022/23. What is new: • Head, neck and chest abscesses increased in Q4 of 2022 compared to the previous 4 years combined. • Invasive bacterial infections in Q4 of 2022 were associated with higher rates of mortality (9%), paediatric intensive care unit (PICU) admission (24%) and requirement for surgical drainage or intervention (67%) than in the preceding years.


Subject(s)
Neisseria meningitidis , Streptococcal Infections , Child , Humans , Female , Infant , Child, Preschool , Male , Abscess , Retrospective Studies , Streptococcal Infections/epidemiology , Streptococcus pneumoniae
2.
Nephrol Dial Transplant ; 38(1): 49-55, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-35554567

ABSTRACT

BACKGROUND: Adolescence is a time of significant change for patients, guardians and clinicians. The paediatrician must ensure patients develop the necessary skills and knowledge required to transition and to function as an independent entity, with autonomy over their own care. The transfer from paediatric to adult care carries an increased risk of graft-related complications attributable to a multitude of reasons, particularly non-adherence to immunosuppressive medicines and poor attendance at scheduled appointments. This systematic review was conducted to ascertain the transitional care models available to clinicians caring for kidney transplant recipients and to compare the approach in each respective case. METHODS: A systematic review was performed, in a methodology outlined by the PRISMA guidelines. OVID MEDLINE and EMBASE databases were searched for studies that outlined valid, replicable models pertaining to transitional care of paediatric kidney transplant recipients between 1946 and Quarter 3 of 2021. The reference lists of selected articles were also perused for further eligible studies and experts in the field were consulted for further eligible articles. Two investigators assessed all studies for eligibility and independently performed data extraction. Any discrepancies were settled by consensus. RESULTS: A total of 1121 abstracts were identified, which was reduced to 1029 upon removal of duplicates. A total of 51 articles were deemed appropriate for full-text review and critical appraisal. A total of 12 articles that described models for transition pertaining to kidney transplant patients were included in qualitative synthesis. Every paper utilized a different transition model. All but one model included a physician and nurse at minimum in the transition process. The involvement of adult nephrologists, medical social work, psychology and psychiatry was variable. The mean age for the initiation of transition was 13.4 years (range: 10-17.5 years). The mean age at transfer to adult services was 18.3 years (range: 16-20.5 years). CONCLUSIONS: Despite the well-established need for good transitional care for paediatric solid-organ transplant recipients, models tailored specifically for kidney transplant recipients are lacking. Further research and validation studies are required to ascertain the best method of providing effective transitional care to these patients. Transitional care should become a standardized process for adolescents and young adults with kidney transplants.


Subject(s)
Kidney Transplantation , Transition to Adult Care , Transitional Care , Young Adult , Humans , Child , Adolescent , Adult , Kidney Transplantation/adverse effects
3.
Eur J Neurol ; 30(10): 3341-3346, 2023 10.
Article in English | MEDLINE | ID: mdl-37422919

ABSTRACT

BACKGROUND: Pathogenic variants in the GAP activity towards RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2, NPRL3) cause focal epilepsy through hyperactivation of the mechanistic target of rapamycin pathway. We report our experience using everolimus in patients with refractory GATOR1-related epilepsy. METHODS: We performed an open-label observational study of everolimus for drug-resistant epilepsy caused by variants in DEPDC5, NPRL2 and NPRL3. Everolimus was titrated to a target serum concentration (5-15 ng/mL). The primary outcome measure was change in mean monthly seizure frequency compared with baseline. RESULTS: Five patients were treated with everolimus. All had highly active (median baseline seizure frequency, 18/month) and refractory focal epilepsy (failed 5-16 prior anti-seizure medications). Four had DEPDC5 variants (three loss-of-function, one missense) and one had a NPRL3 splice-site variant. All patients with DEPDC5 loss-of-function variants had significantly reduced seizures (74.3%-86.1%), although one stopped everolimus after 12 months due to psychiatric symptoms. Everolimus was less effective in the patient with a DEPDC5 missense variant (43.9% seizure frequency reduction). The patient with NPRL3-related epilepsy had seizure worsening. The most common adverse event was stomatitis. CONCLUSIONS: Our study provides the first human data on the potential benefit of everolimus precision therapy for epilepsy caused by DEPDC5 loss-of-function variants. Further studies are needed to support our findings.


Subject(s)
Drug Resistant Epilepsy , Epilepsies, Partial , Epilepsy , Humans , Everolimus/adverse effects , Epilepsies, Partial/drug therapy , Epilepsies, Partial/genetics , GTPase-Activating Proteins/genetics , Drug Resistant Epilepsy/drug therapy , Drug Resistant Epilepsy/genetics
4.
Am J Hum Genet ; 104(5): 948-956, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982612

ABSTRACT

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.


Subject(s)
Calcium Channels, N-Type/genetics , Calcium/metabolism , Dyskinesias/genetics , Epilepsy/genetics , Mutation , Synaptic Transmission , Adolescent , Child , Child, Preschool , Dyskinesias/pathology , Epilepsy/pathology , Female , Humans , Infant , Loss of Heterozygosity , Male , Pedigree
5.
Mov Disord ; 37(10): 2139-2146, 2022 10.
Article in English | MEDLINE | ID: mdl-35876425

ABSTRACT

BACKGROUND: Despite advances in next generation sequencing technologies, the identification of variants of uncertain significance (VUS) can often hinder definitive diagnosis in patients with complex neurodevelopmental disorders. OBJECTIVE: The objective of this study was to identify and characterize the underlying cause of disease in a family with two children with severe developmental delay associated with generalized dystonia and episodic status dystonicus, chorea, epilepsy, and cataracts. METHODS: Candidate genes identified by autozygosity mapping and whole-exome sequencing were characterized using cellular and vertebrate model systems. RESULTS: Homozygous variants were found in three candidate genes: MED27, SLC6A7, and MPPE1. Although the patients had features of MED27-related disorder, the SLC6A7 and MPPE1 variants were functionally investigated. SLC6A7 variant in vitro overexpression caused decreased proline transport as a result of reduced cell-surface expression, and zebrafish knockdown of slc6a7 exhibited developmental delay and fragile motor neuron morphology that could not be rescued by L-proline transporter-G396S RNA. Lastly, patient fibroblasts displayed reduced cell-surface expression of glycophosphatidylinositol-anchored proteins linked to MPPE1 dysfunction. CONCLUSIONS: We report a family harboring a homozygous MED27 variant with additional loss-of-function SLC6A7 and MPPE1 gene variants, which potentially contribute to a blended phenotype caused by multilocus pathogenic variants. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Dystonic Disorders , Movement Disorders , Neurodevelopmental Disorders , Animals , Dystonia/diagnosis , Dystonia/genetics , Dystonic Disorders/genetics , Movement Disorders/genetics , Neurodevelopmental Disorders/genetics , Proline , RNA , Zebrafish/genetics
6.
Dev Med Child Neurol ; 64(6): 780-788, 2022 06.
Article in English | MEDLINE | ID: mdl-35092693

ABSTRACT

AIM: To estimate the prevalence, and evaluate presentation, treatment response, treatment side effects, and long-term seizure outcomes in all known cases of children with Down syndrome and infantile spasms on the island of Ireland. METHOD: This was a 10-year retrospective multicentre review of clinical records and investigations, focusing on treatment response, side effects, and long-term outcomes. RESULTS: The prevalence of infantile spasms in Down syndrome was 3.0% during the study period. Fifty-four infants were identified with median age of spasm onset at 201 days (interquartile range [IQR] 156-242). Spasm cessation was achieved in 88% (n=46) at a median of 110 days (IQR 5-66). The most common first-line medications were prednisolone (n=20, 37%), vigabatrin (n=18, 33.3%), and sodium valproate (n=9, 16.7%). At follow-up (median age 23.7mo; IQR 13.4-40.6), 25% had ongoing seizures and 85% had developmental concerns. Treatment within 60 days did not correlate with spasm cessation. Seventeen children (31%) experienced medication side effects, with vigabatrin accounting for 52%. INTERPRETATION: Prednisolone is an effective and well-tolerated medication for treating infantile spasms in Down syndrome. Despite the high percentage of spasm cessation, developmental concerns and ongoing seizures were common.


Subject(s)
Down Syndrome , Spasms, Infantile , Adult , Anticonvulsants/therapeutic use , Child , Down Syndrome/complications , Humans , Infant , Prednisolone/therapeutic use , Seizures/drug therapy , Spasm/chemically induced , Spasm/drug therapy , Spasms, Infantile/drug therapy , Spasms, Infantile/epidemiology , Treatment Outcome , Vigabatrin/therapeutic use , Young Adult
7.
Eur J Pediatr ; 181(2): 501-512, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34378062

ABSTRACT

Our objective was to establish the rate of neurological involvement in Shiga toxin-producing Escherichia coli-hemolytic uremic syndrome (STEC-HUS) and describe the clinical presentation, management and outcome. A retrospective chart review of children aged ≤ 16 years with STEC-HUS in Children's Health Ireland from 2005 to 2018 was conducted. Laboratory confirmation of STEC infection was required for inclusion. Neurological involvement was defined as encephalopathy, focal neurological deficit, and/or seizure activity. Data on clinical presentation, management, and outcome were collected. We identified 240 children with HUS; 202 had confirmed STEC infection. Neurological involvement occurred in 22 (11%). The most common presentation was seizures (73%). In the neurological group, 19 (86%) were treated with plasma exchange and/or eculizumab. Of the 21 surviving children with neurological involvement, 19 (91%) achieved a complete neurological recovery. A higher proportion of children in the neurological group had renal sequelae (27% vs. 12%, P = .031). One patient died from multi-organ failure.Conclusion: We have identified the rate of neurological involvement in a large cohort of children with STEC-HUS as 11%. Neurological involvement in STEC-HUS is associated with good long-term outcome (complete neurological recovery in 91%) and a low case-fatality rate (4.5%) in our cohort. What is Known: • HUS is associated with neurological involvement in up to 30% of cases. • Neurological involvement has been reported as predictor of poor outcome, with associated increased morbidity and mortality. What is New: • The incidence of neurological involvement in STEC-HUS is 11%. • Neurological involvement is associated with predominantly good long-term outcome (90%) and a reduced case-fatality rate (4.5%) compared to older reports.


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Adolescent , Child , Escherichia coli Infections/complications , Escherichia coli Infections/epidemiology , Escherichia coli Infections/therapy , Hemolytic-Uremic Syndrome/complications , Hemolytic-Uremic Syndrome/diagnosis , Hemolytic-Uremic Syndrome/epidemiology , Humans , Plasma Exchange , Retrospective Studies
8.
Ann Neurol ; 88(5): 867-877, 2020 11.
Article in English | MEDLINE | ID: mdl-32808683

ABSTRACT

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Subject(s)
Dystonia/genetics , Lysosomal Storage Diseases/genetics , Vesicular Transport Proteins/genetics , Adult , Cost of Illness , Dystonia/pathology , Exome/genetics , Female , Fibroblasts/pathology , Genetic Predisposition to Disease/genetics , Genetic Variation , Humans , Lysosomal Storage Diseases/pathology , Male , Middle Aged , Mutation/genetics , Pedigree
9.
Epilepsia ; 62(1): e13-e21, 2021 01.
Article in English | MEDLINE | ID: mdl-33280099

ABSTRACT

Chromosome 1q41-q42 deletion syndrome is a rare cause of intellectual disability, seizures, dysmorphology, and multiple anomalies. Two genes in the 1q41-q42 microdeletion, WDR26 and FBXO28, have been implicated in monogenic disease. Patients with WDR26 encephalopathy overlap clinically with those with 1q41-q42 deletion syndrome, whereas only one patient with FBXO28 encephalopathy has been described. Seizures are a prominent feature of 1q41-q42 deletion syndrome; therefore, we hypothesized that pathogenic FBXO28 variants cause developmental and epileptic encephalopathies (DEEs). We describe nine new patients with FBXO28 pathogenic variants (four missense, including one recurrent, three nonsense, and one frameshift) and analyze all 10 known cases to delineate the phenotypic spectrum. All patients had epilepsy and 9 of 10 had DEE, including infantile spasms (3) and a progressive myoclonic epilepsy (1). Median age at seizure onset was 22.5 months (range 8 months to 5 years). Nine of 10 patients had intellectual disability, which was profound in six of nine and severe in three of nine. Movement disorders occurred in eight of 10 patients, six of 10 had hypotonia, four of 10 had acquired microcephaly, and five of 10 had dysmorphic features, albeit different to those typically seen in 1q41-q42 deletion syndrome and WDR26 encephalopathy. We distinguish FBXO28 encephalopathy from both of these disorders with more severe intellectual impairment, drug-resistant epilepsy, and hyperkinetic movement disorders.


Subject(s)
Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Myoclonic Epilepsies, Progressive/genetics , SKP Cullin F-Box Protein Ligases/genetics , Spasms, Infantile/genetics , Adolescent , Adult , Brain Diseases/complications , Brain Diseases/genetics , Brain Diseases/physiopathology , Child , Child, Preschool , Codon, Nonsense , Craniofacial Abnormalities/complications , Craniofacial Abnormalities/physiopathology , Drug Resistant Epilepsy/complications , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/physiopathology , Electroencephalography , Epileptic Syndromes/complications , Epileptic Syndromes/genetics , Epileptic Syndromes/physiopathology , Female , Frameshift Mutation , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/physiopathology , Male , Mutation, Missense , Myoclonic Epilepsies, Progressive/complications , Myoclonic Epilepsies, Progressive/physiopathology , Phenotype , Spasms, Infantile/complications , Spasms, Infantile/physiopathology , Young Adult
10.
Arch Dis Child Educ Pract Ed ; 106(2): 71-77, 2021 04.
Article in English | MEDLINE | ID: mdl-32928841

ABSTRACT

Dystonia is a hyperkinetic movement disorder characterised by sustained or intermittent muscle contractions causing abnormal movements, postures or both. Dystonia is a challenging condition to diagnose and treat. Dystonia is often under-recognised in children, particularly in cerebral palsy, and frequently coexists with spasticity. This guide aims to simplify the approach to diagnosis, investigation and treatment of childhood-onset dystonia. The principle of treatment is similar regardless of the underlying aetiology: identification of potential triggers and consideration of both pharmacological and surgical options.


Subject(s)
Dystonia , Cerebral Palsy/complications , Cerebral Palsy/diagnosis , Cerebral Palsy/therapy , Child , Dystonia/diagnosis , Dystonia/therapy , Humans , Muscle Spasticity , Referral and Consultation
11.
Mov Disord ; 35(8): 1357-1368, 2020 08.
Article in English | MEDLINE | ID: mdl-32472658

ABSTRACT

BACKGROUND: Juvenile forms of parkinsonism are rare conditions with onset of bradykinesia, tremor and rigidity before the age of 21 years. These atypical presentations commonly have a genetic aetiology, highlighting important insights into underlying pathophysiology. Genetic defects may affect key proteins of the endocytic pathway and clathrin-mediated endocytosis (CME), as in DNAJC6-related juvenile parkinsonism. OBJECTIVE: To report on a new patient cohort with juvenile-onset DNAJC6 parkinsonism-dystonia and determine the functional consequences on auxilin and dopamine homeostasis. METHODS: Twenty-five children with juvenile parkinsonism were identified from a research cohort of patients with undiagnosed pediatric movement disorders. Molecular genetic investigations included autozygosity mapping studies and whole-exome sequencing. Patient fibroblasts and CSF were analyzed for auxilin, cyclin G-associated kinase and synaptic proteins. RESULTS: We identified 6 patients harboring previously unreported, homozygous nonsense DNAJC6 mutations. All presented with neurodevelopmental delay in infancy, progressive parkinsonism, and neurological regression in childhood. 123 I-FP-CIT SPECT (DaTScan) was performed in 3 patients and demonstrated reduced or absent tracer uptake in the basal ganglia. CSF neurotransmitter analysis revealed an isolated reduction of homovanillic acid. Auxilin levels were significantly reduced in both patient fibroblasts and CSF. Cyclin G-associated kinase levels in CSF were significantly increased, whereas a number of presynaptic dopaminergic proteins were reduced. CONCLUSIONS: DNAJC6 is an emerging cause of recessive juvenile parkinsonism-dystonia. DNAJC6 encodes the cochaperone protein auxilin, involved in CME of synaptic vesicles. The observed dopamine dyshomeostasis in patients is likely to be multifactorial, secondary to auxilin deficiency and/or neurodegeneration. Increased patient CSF cyclin G-associated kinase, in tandem with reduced auxilin levels, suggests a possible compensatory role of cyclin G-associated kinase, as observed in the auxilin knockout mouse. DNAJC6 parkinsonism-dystonia should be considered as a differential diagnosis for pediatric neurotransmitter disorders associated with low homovanillic acid levels. Future research in elucidating disease pathogenesis will aid the development of better treatments for this pharmacoresistant disorder. © 2020 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Dystonia , Parkinsonian Disorders , Child , Dopamine , Dystonia/diagnostic imaging , Dystonia/genetics , HSP40 Heat-Shock Proteins/genetics , Homeostasis , Humans , Mutation/genetics , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/genetics
12.
Epilepsy Behav Rep ; 25: 100647, 2024.
Article in English | MEDLINE | ID: mdl-38317675

ABSTRACT

KBG syndrome is characterised by developmental delay, dental (macrodontia of upper central incisors), craniofacial and skeletal anomalies. Since the identification of variants in the gene (ANKRD11) responsible for KBG syndrome, wider phenotypes are emerging. While there is phenotypic variability within many features of KBG syndrome, epilepsy is not usually markedly severe and movement disorders largely undocumented. Here we describe a novel early onset phenotype of dyskinetic epileptic encephalopathy in a male, who presented during infancy with a florid hyperkinetic movement disorder and developmental regression. Initially he had epileptic spasms and tonic seizures, and EEGs revealed a modified hypsarrhythmia. The epilepsy phenotype evolved to Lennox-Gastaut syndrome with seizures resistant to multiple anti-seizure therapies and the movement disorder evolved to choreoathetosis of limbs and head with oro-lingual dyskinesias. Previous extensive neurometabolic and imaging investigations, including panel-based exome sequencing were unremarkable. Later trio exome sequencing identified a de novo pathogenic heterozygous frameshift deletion of ANKRD11 (c.6792delC; p.Ala2265Profs*72). Review of the literature did not identify any individuals with such a hyperkinetic movement disorder presentation in combination with early-onset epileptic encephalopathy. This report expands the phenotype of ANKRD11-related KBG syndrome to include epileptic dyskinetic encephalopathy.

14.
Pediatr Neurol ; 148: 56-64, 2023 11.
Article in English | MEDLINE | ID: mdl-37666206

ABSTRACT

BACKGROUND: Typical absence seizures (TAS) are seen in idiopathic generalized epilepsy. Electroencephalography (EEG) contributes to syndrome characterization and counseling in an area where genetics does not currently play a significant role. Prominent interictal EEG findings are seen in juvenile absence epilepsy (JAE) and are thus thought to be associated with less favorable outcome in any TAS case despite lack of evidence. Our study evaluates EEG findings and their association with seizure outcomes in children with TAS. METHODS: Retrospective cohort study of 123 children over 10 years with extensive EEG analysis and medical record review. Phone interviews ascertained longer-term outcomes. EEG reviewers were unaware of outcomes. RESULTS: Total cohort included 123 children with phone review completed in 98. Median follow-up was 5 years 9 months. Seizure freedom was seen in 59% off antiseizure medicines (ASMs). Interictal findings included focal discharges in 29%, fragments of spike-wave (SW) discharges in 82.1%, and generalized interictal discharges in 63.4%. Interictal SW was more likely in those who slept (100%, 18 of 18) versus those who did not (57%, 60 of 105) (P < 0.001). Outcome analysis found no associations between focal or generalized interictal findings and seizure freedom, relapse off ASM, occurrence of other seizure types, or response to first ASM. CONCLUSION: Focal and generalized interictal EEG discharges are common in children with TAS and are not associated with poorer outcomes. These interictal findings were traditionally associated with JAE rather than childhood absence epilepsy and were thus believed to be associated with potentially poorer outcome, which is probably not the case.


Subject(s)
Epilepsy, Absence , Epilepsy, Generalized , Child , Humans , Retrospective Studies , Seizures/drug therapy , Electroencephalography , Epilepsy, Absence/drug therapy
15.
Eur J Hum Genet ; 31(3): 345-352, 2023 03.
Article in English | MEDLINE | ID: mdl-36564538

ABSTRACT

The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies.


Subject(s)
Autistic Disorder , Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Humans , Autistic Disorder/genetics , Epilepsy/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/genetics , Phenotype , Syntaxin 1/genetics , Heterozygote
16.
Neurology ; 100(6): e603-e615, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36307226

ABSTRACT

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Subject(s)
Epilepsy, Generalized , Epilepsy , Ether-A-Go-Go Potassium Channels , Child , Humans , Infant, Newborn , Epilepsy/genetics , Epilepsy, Generalized/genetics , Mutation , Phenotype , Seizures/genetics , Ether-A-Go-Go Potassium Channels/genetics
20.
AAOHN J ; 59(11): 483-90, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22017191

ABSTRACT

This review sought to assess compliance concerns, determine risk management strategies, and identify opportunities for future research to contribute to employers' understanding of the laws and regulations that apply to on-site care. A comprehensive review of databases, professional organizations' websites, and journals resulted in 22 publications reporting on the consequences of noncompliance among on-site health centers accepted for inclusion. None of those studies reported a study design or quantifiable outcome data. Two noncompliance themes were repeated among the publications. First, direct penalties included fines, civil actions, loss of licensure, and, potentially, criminal charges. Second, noncompliance also resulted in indirect costs such as employee mistrust and lowered standards of care, which jeopardize on-site health centers' ability to demonstrate a return on investment. Further research with rigorous methodology is needed to inform employer decisions about on-site health services and associated risk management.


Subject(s)
Confidentiality/standards , Occupational Health Nursing/organization & administration , Occupational Health Services/organization & administration , Safety Management/organization & administration , Workplace , Confidentiality/legislation & jurisprudence , Humans , Occupational Health Services/legislation & jurisprudence , Risk Factors , Safety Management/legislation & jurisprudence , United States
SELECTION OF CITATIONS
SEARCH DETAIL