Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Neuroreport ; 26(13): 785-90, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26177336

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease resulting from mutation of the X-linked dystrophin gene. In addition to skeletal muscle pathology, cognitive deficits have been identified in patients with DMD. There is a lack of research investigating the pathological mechanisms underlying the neurological deficits apparent in DMD. The current study assessed whether increases in calcium contributed towards neuronal cell loss or histopathological changes in the genetically homologous mdx mouse model of DMD in sections from the cerebral cortex, hippocampus and cerebellum at 24 days, 12 weeks and 9 months of age. Alizarin S staining showed a significant increase in calcium-positive neurons in the mdx cerebral cortex at 24 days and 9 months and the cerebellum at 24 days, 12 weeks and 9 months compared with age-matched controls. However, neuronal cell counts of haemotoxylin and eosin-stained sections showed that altered calcium levels did not lead to neuronal cell loss. A better understanding of how the disruption of calcium regulation affects the function of neurons may explain the neurological deficits apparent in mdx mice and patients with DMD.


Subject(s)
Calcium/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Muscular Dystrophy, Duchenne/metabolism , Neurons/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx
SELECTION OF CITATIONS
SEARCH DETAIL