Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 391(7): 619-626, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39141854

ABSTRACT

The durability of communication with the use of brain-computer interfaces in persons with progressive neurodegenerative disease has not been extensively examined. We report on 7 years of independent at-home use of an implanted brain-computer interface for communication by a person with advanced amyotrophic lateral sclerosis (ALS), the inception of which was reported in 2016. The frequency of at-home use increased over time to compensate for gradual loss of control of an eye-gaze-tracking device, followed by a progressive decrease in use starting 6 years after implantation. At-home use ended when control of the brain-computer interface became unreliable. No signs of technical malfunction were found. Instead, the amplitude of neural signals declined, and computed tomographic imaging revealed progressive atrophy, which suggested that ALS-related neurodegeneration ultimately rendered the brain-computer interface ineffective after years of successful use, although alternative explanations are plausible. (Funded by the National Institute on Deafness and Other Communication Disorders and others; ClinicalTrials.gov number, NCT02224469.).


Subject(s)
Amyotrophic Lateral Sclerosis , Atrophy , Brain-Computer Interfaces , Female , Humans , Middle Aged , Amyotrophic Lateral Sclerosis/complications , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/rehabilitation , Atrophy/diagnostic imaging , Atrophy/etiology , Atrophy/prevention & control , Brain/diagnostic imaging , Communication Aids for Disabled , Time Factors , Treatment Failure , Electrodes, Implanted
2.
Epilepsia ; 63(2): 364-374, 2022 02.
Article in English | MEDLINE | ID: mdl-34904712

ABSTRACT

OBJECTIVE: Increasing evidence supports the contribution of inflammatory mechanisms to the neurological manifestations of epileptogenic developmental pathologies linked to mammalian target of rapamycin (mTOR) pathway dysregulation (mTORopathies), such as tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD). In this study, we aimed to investigate the expression pattern and cellular distribution of the complement factors C1q and C3 in resected cortical tissue of clinically well-characterized patients with TSC and FCD2B. METHODS: We applied immunohistochemistry in TSC (n = 29) and FCD2B (n = 32) samples and compared them to autopsy and biopsy controls (n = 27). Furthermore, protein expression was observed via Western blot, and for descriptive colocalization studies immunofluorescence double labeling was performed. RESULTS: Protein expression for C3 was significantly upregulated in TSC and FCD2B white and gray matter lesions compared to controls. Staining of the synaptic vesicle protein synaptophysin showed a remarkable increase in the white matter of both TSC and FCD2B. Furthermore, confocal imaging revealed colocalization of complement factors with astroglial, microglial, neuronal, and abnormal cells in various patterns. SIGNIFICANCE: Our results demonstrate that the prominent activation of the complement pathway represents a common pathological hallmark of TSC and FCD2B, suggesting that complement overactivation may play a role in these mTORopathies.


Subject(s)
Epilepsy , Malformations of Cortical Development , Tuberous Sclerosis , Brain/pathology , Epilepsy/pathology , Humans , Malformations of Cortical Development/complications , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/metabolism , Neurons/pathology , Tuberous Sclerosis/complications , Tuberous Sclerosis/pathology
3.
Epilepsia ; 62(4): 997-1004, 2021 04.
Article in English | MEDLINE | ID: mdl-33617688

ABSTRACT

OBJECTIVE: In people with low-grade intrinsic brain tumors, an epileptic focus is often located close to the lesion. High-frequency oscillations (HFOs) in electrocorticography (ECoG) might help to delineate this focus. We investigated the relationship between HFOs and low-grade brain tumors and their potential value for tumor-related epilepsy surgery. METHODS: We analyzed pre- and postresection intraoperative ECoG in 41 patients with refractory epilepsy and a low-grade lesion. Electrodes were designated as overlying the tumor, adjacent resected tissue (peritumoral), or outside the resection bed using magnetic resonance imaging (MRI) and intraoperative photographs. We then used a semiautomated approach to detect HFOs as either ripples (80-250 Hz) or fast ripples (250-500 Hz). RESULTS: The rate of fast ripples was higher in electrodes covering tumor and peritumoral tissue than outside the resection (p = .04). Mesiotemporal tumors showed more ripples (p = .002), but not more fast ripples (p = .07), than superficial tumors. Rates of fast ripples were higher in glioma and extraventricular neurocytoma than in ganglioglioma or dysembryoplastic neuroepithelial tumor (DNET). The rate of ripples and fast ripples in postresection ECoG was not higher in patients with residual tumor tissue on MRI than those without. The rate of ripples in postresection ECoG was higher in patients with good than bad seizure outcome (p = .03). Fast ripples outside the resection and in post-ECoG seem related to seizure recurrence. SIGNIFICANCE: Fast ripples in intraoperative ECoG can be used to help guide resection in tumor-related epilepsy surgery. Preresection fast ripples occur predominantly in epileptogenic tumor and peritumoral tissue. Fast ripple rates are higher in glioma and extraventricular neurocytoma than in ganglioglioma and DNET.


Subject(s)
Brain Neoplasms/physiopathology , Brain Neoplasms/surgery , Electrocorticography/methods , Epilepsy/physiopathology , Epilepsy/surgery , Intraoperative Neurophysiological Monitoring/methods , Adolescent , Adult , Brain Neoplasms/diagnosis , Brain Waves/physiology , Child , Child, Preschool , Cohort Studies , Epilepsy/diagnosis , Female , Humans , Infant , Male , Middle Aged , Young Adult
4.
J Neurosci ; 39(26): 5064-5079, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31015341

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disease characterized by recurrent seizures. The antiepileptic drugs currently available to treat mTLE are ineffective in one-third of patients and lack disease-modifying effects. miRNAs, a class of small noncoding RNAs which control gene expression at the post-transcriptional level, play a key role in the pathogenesis of mTLE and other epilepsies. Although manipulation of miRNAs at acute stages has been reported to reduce subsequent spontaneous seizures, it is uncertain whether targeting miRNAs at chronic stages of mTLE can also reduce seizures. Furthermore, the functional role and downstream targets of most epilepsy-associated miRNAs remain poorly understood. Here, we show that miR-135a is selectively upregulated within neurons in epileptic brain and report that targeting miR-135a in vivo using antagomirs after onset of spontaneous recurrent seizures can reduce seizure activity at the chronic stage of experimental mTLE in male mice. Further, by using an unbiased approach combining immunoprecipitation and RNA sequencing, we identify several novel neuronal targets of miR-135a, including Mef2a Mef2 proteins are key regulators of excitatory synapse density. Mef2a and miR-135a show reciprocal expression regulation in human (of both sexes) and experimental TLE, and miR-135a regulates dendritic spine number and type through Mef2. Together, our data show that miR-135a is target for reducing seizure activity in chronic epilepsy, and that deregulation of miR-135a in epilepsy may alter Mef2a expression and thereby affect synaptic function and plasticity.SIGNIFICANCE STATEMENT miRNAs are post-transcriptional regulators of gene expression with roles in the pathogenesis of epilepsy. However, the precise mechanism of action and therapeutic potential of most epilepsy-associated miRNAs remain poorly understood. Our study reveals dramatic upregulation of the key neuronal miRNA miR-135a in both experimental and human mesial temporal lobe epilepsy. Silencing miR-135a in experimental temporal lobe epilepsy reduces seizure activity at the spontaneous recurrent seizure stage. These data support the exciting possibility that miRNAs can be targeted to combat seizures after spontaneous seizure activity has been established. Further, by using unbiased approaches novel neuronal targets of miR-135a, including members of the Mef2 protein family, are identified that begin to explain how deregulation of miR-135a may contribute to epilepsy.


Subject(s)
Antagomirs/therapeutic use , Epilepsy, Temporal Lobe/drug therapy , Hippocampus/drug effects , MicroRNAs/antagonists & inhibitors , Seizures/drug therapy , Animals , Antagomirs/pharmacology , Disease Models, Animal , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/metabolism , Hippocampus/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Male , Mice , Neurons/drug effects , Neurons/metabolism , Seizures/genetics , Seizures/metabolism , Treatment Outcome
5.
Stroke ; 51(1): 268-274, 2020 01.
Article in English | MEDLINE | ID: mdl-31795902

ABSTRACT

Background and Purpose- Interventional treatment of unruptured brain arteriovenous malformations (BAVMs) has become increasingly controversial. Because medical therapy is still lacking, we aimed to obtain insight into the disease mechanisms implicated in BAVMs and to identify potential targets for medical treatment to prevent rupture of a BAVM. Methods- We used next-generation RNA sequencing to identify differential expression on a transcriptome-wide level comparing tissue samples of 12 BAVMs to 16 intracranial control arteries. We identified differentially expressed genes by negative binominal generalized log-linear regression (false discovery rate corrected P<0.05). We selected 10 genes for validation using droplet digital polymerase chain reaction. We performed functional pathway analysis accounting for potential gene-length bias, to establish enhancement of biological pathways involved in BAVMs. We further assessed which Gene Ontology terms were enriched. Results- We found 736 upregulated genes in BAVMs including genes implicated in the cytoskeletal machinery and cell-migration and genes encoding for inflammatory cytokines and secretory products of neutrophils and macrophages. Furthermore, we found 498 genes downregulated including genes implicated in extracellular matrix composition, the binary angiopoietin-TIE system, and TGF (transforming growth factor)-ß signaling. We confirmed the differential expression of top 10 ranked genes. Functional pathway analysis showed enrichment of the protein digestion and absorption pathway (false discovery rate-adjusted P=1.70×10-2). We identified 47 enriched Gene Ontology terms (false discovery rate-adjusted P<0.05) implicated in cytoskeleton network, cell-migration, endoplasmic reticulum, transmembrane transport, and extracellular matrix composition. Conclusions- Our genome-wide RNA-sequencing study points to involvement of inflammatory mediators, loss of cerebrovascular quiescence, and impaired integrity of the vascular wall in the pathophysiology of BAVMs. Our study may lend support to potential receptivity of BAVMs to medical therapeutics, including those promoting vessel maturation, and anti-inflammatory and immune-modifying drugs.


Subject(s)
Brain/metabolism , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Intracranial Arteriovenous Malformations , Sequence Analysis, RNA , Adult , Aged , Female , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Intracranial Arteriovenous Malformations/genetics , Intracranial Arteriovenous Malformations/metabolism , Intracranial Arteriovenous Malformations/pathology , Male , Middle Aged , Retrospective Studies
6.
N Engl J Med ; 375(21): 2060-2066, 2016 11 24.
Article in English | MEDLINE | ID: mdl-27959736

ABSTRACT

Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).


Subject(s)
Amyotrophic Lateral Sclerosis/rehabilitation , Aphonia/rehabilitation , Brain-Computer Interfaces , Communication Aids for Disabled , Quadriplegia/rehabilitation , Amyotrophic Lateral Sclerosis/complications , Aphonia/etiology , Electrodes, Implanted , Female , Humans , Middle Aged , Motor Cortex , Neurological Rehabilitation/instrumentation , Quadriplegia/etiology
7.
Epilepsy Behav ; 94: 209-215, 2019 05.
Article in English | MEDLINE | ID: mdl-30974349

ABSTRACT

Mild malformation of cortical development (mMCD) and focal cortical dysplasia (FCD) subtypes combined are by far the most common histological diagnoses in children who undergo surgery as treatment for refractory epilepsy. In patients with refractory epilepsy, a substantial burden of disease is due to cognitive impairment. We studied intelligence quotient (IQ) or developmental quotient (DQ) values and their change after epilepsy surgery in a consecutive series of 42 children (median age at surgery: 4.5, range: 0-17.0 years) with refractory epilepsy due to mMCD/FCD. Cognitive impairment, defined as IQ/DQ below 70, was present in 51% prior to surgery. Cognitive impairment was associated with earlier onset of epilepsy, longer epilepsy duration, and FCD type I histology. Clinically relevant improvement of ≥10 IQ/DQ points was found in 24% of children and was related to the presence of presurgical epileptic encephalopathy (EE). At time of postsurgical cognitive testing, 59% of children were completely seizure-free (Engel 1A). We found no association between cognitive outcome and seizure or medication status at two years of follow-up. Epilepsy surgery in children with mMCD or FCD not only is likely to result in complete and continuous seizure freedom, but also improves cognitive function in many.


Subject(s)
Cognitive Dysfunction/surgery , Epilepsy/surgery , Malformations of Cortical Development/surgery , Outcome Assessment, Health Care , Adolescent , Child , Child, Preschool , Cognitive Dysfunction/etiology , Craniofacial Abnormalities/complications , Craniofacial Abnormalities/surgery , Drug Resistant Epilepsy/complications , Drug Resistant Epilepsy/surgery , Epilepsies, Partial/complications , Epilepsies, Partial/surgery , Epilepsy/complications , Female , Follow-Up Studies , Humans , Infant , Male , Malformations of Cortical Development/complications
8.
Stroke ; 47(5): 1286-93, 2016 05.
Article in English | MEDLINE | ID: mdl-27026628

ABSTRACT

BACKGROUND AND PURPOSE: Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. METHODS: We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. RESULTS: We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. CONCLUSIONS: For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture.


Subject(s)
Aneurysm, Ruptured/genetics , Extracellular Matrix/genetics , Gene Expression Profiling/methods , Immunoglobulins/genetics , Intracranial Aneurysm/genetics , Lysosomes/genetics , Sequence Analysis, RNA/methods , Female , Humans , Male , Metabolic Networks and Pathways , Middle Aged
9.
Epilepsia ; 56(5): 717-25, 2015 May.
Article in English | MEDLINE | ID: mdl-25847357

ABSTRACT

OBJECTIVE: Over the past decades, the number of epilepsy surgeries in children has increased and indications for surgery have broadened. We studied the changes in patient characteristics between 1990 and 2011 in a nationwide cohort and related these to seizure outcome and postoperative medication status. Second, we tried to identify predictors for seizure outcome after pediatric epilepsy surgery. METHODS: To study changes over time, we divided this retrospective cohort of 234 children into two consecutive time periods of 11 years, and statistically compared the epochs in terms of patient characteristics, surgical variables, complications, seizure outcome, and postoperative medication status. To identify predictors of postoperative seizure freedom, we performed univariable and multivariable logistic regression analyses. RESULTS: The number of surgeries per year increased from an average of 5 in the first, to 16 in the past epoch. Over time, significantly more surgeries were performed for malformations of cortical development, and more patients underwent magnetoencephalography (MEG) and invasive monitoring. Four percent of patients had a serious complication. Complete seizure freedom (Engel class IA) at 2 years after surgery was achieved in 74% of patients, which did not change significantly over time. The proportion of patients who were free from seizures and antiepileptic medication 2 years after surgery significantly increased from 13% to 32%. Factors predictive of seizure recurrence were preoperative intracranial monitoring, multilobar surgery, etiology, and longer duration of epilepsy before surgery. SIGNIFICANCE: Although more complex cases were operated over time and medication was withdrawn earlier after surgery, success rates at 2 years remained stable. In combination with low complication rates, this underscores the efficacy and safety of pediatric epilepsy surgery. It is important to consider epilepsy surgery early, as longer duration of epilepsy increased the risk of postoperative seizure recurrence.


Subject(s)
Epilepsy/surgery , Neurosurgery , Pediatrics , Adolescent , Child , Child, Preschool , Cohort Studies , Epilepsy/etiology , Female , Humans , Male , Netherlands , Predictive Value of Tests , Treatment Outcome
10.
Clin Neurophysiol ; 162: 210-218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643614

ABSTRACT

OBJECTIVE: Focal cortical dysplasias (FCD) are characterized by distinct interictal spike patterns and high frequency oscillations (HFOs; ripples: 80-250 Hz; fast ripples: 250-500 Hz) in the intra-operative electrocorticogram (ioECoG). We studied the temporal relation between intra-operative spikes and HFOs and their relation to resected tissue in people with FCD with a favorable outcome. METHODS: We included patients who underwent ioECoG-tailored epilepsy surgery with pathology confirmed FCD and long-term Engel 1A outcome. Spikes and HFOs were automatically detected and visually checked in 1-minute pre-resection-ioECoG. Channels covering resected and non-resected tissue were compared using a logistic mixed model, assessing event numbers, co-occurrence ratios, and time-based properties. RESULTS: We found pre-resection spikes, ripples in respectively 21 and 20 out of 22 patients. Channels covering resected tissue showed high numbers of spikes and HFOs, and high ratios of co-occurring events. Spikes, especially with ripples, have a relatively sharp rising flank with a long descending flank and early ripple onset over resected tissue. CONCLUSIONS: A combined analysis of event numbers, ratios, and temporal relationships between spikes and HFOs may aid identifying epileptic tissue in epilepsy surgery. SIGNIFICANCE: This study shows a promising method for clinically relevant properties of events, closely associated with FCD.


Subject(s)
Electrocorticography , Intraoperative Neurophysiological Monitoring , Malformations of Cortical Development , Humans , Female , Male , Adult , Adolescent , Malformations of Cortical Development/physiopathology , Malformations of Cortical Development/surgery , Electrocorticography/methods , Young Adult , Intraoperative Neurophysiological Monitoring/methods , Child , Middle Aged , Epilepsy/physiopathology , Epilepsy/surgery , Epilepsy/diagnosis , Brain Waves/physiology , Child, Preschool , Action Potentials/physiology , Electroencephalography/methods , Focal Cortical Dysplasia
11.
Epilepsia ; 54(11): e150-4, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24199829

ABSTRACT

An epilepsy patient with recurring sensorimotor seizures involving the left hand every 10 min, was imaged with a hyperspectral camera during surgery. By calculating the changes in oxygenated, deoxygenated blood, and total blood volume in the cortex, a focal increase in oxygenated and total blood volume could be observed in the sensory cortex, corresponding to the seizure-onset zone defined by intracranial electroencephalography (EEG) findings. This probably reflects very local seizure activity. After multiple subpial transections in this motor area, clinical seizures abated.


Subject(s)
Brain Mapping , Image Processing, Computer-Assisted , Motor Cortex/surgery , Seizures/surgery , Adolescent , Brain Mapping/methods , Electroencephalography/methods , Female , Humans , Image Processing, Computer-Assisted/methods , Motor Cortex/blood supply , Motor Cortex/physiopathology , Seizures/blood , Seizures/diagnosis , Treatment Outcome
12.
Cell Mol Life Sci ; 69(18): 3127-45, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22535415

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disorder characterized by recurrent seizures. The pathogenic mechanisms underlying mTLE may involve defects in the post-transcriptional regulation of gene expression. MicroRNAs (miRNAs) are non-coding RNAs that control the expression of genes at the post-transcriptional level. Here, we performed a genome-wide miRNA profiling study to examine whether miRNA-mediated mechanisms are affected in human mTLE. miRNA profiles of the hippocampus of autopsy control patients and two mTLE patient groups were compared. This revealed segregated miRNA signatures for the three different patient groups and 165 miRNAs with up- or down-regulated expression in mTLE. miRNA in situ hybridization detected cell type-specific changes in miRNA expression and an abnormal nuclear localization of select miRNAs in neurons and glial cells of mTLE patients. Of several cellular processes implicated in mTLE, the immune response was most prominently targeted by deregulated miRNAs. Enhanced expression of inflammatory mediators was paralleled by a reduction in miRNAs that were found to target the 3'-untranslated regions of these genes in reporter assays. miR-221 and miR-222 were shown to regulate endogenous ICAM1 expression and were selectively co-expressed with ICAM1 in astrocytes in mTLE patients. Our findings suggest that miRNA changes in mTLE affect the expression of immunomodulatory proteins thereby further facilitating the immune response. This mechanism may have broad implications given the central role of astrocytes and the immune system in human neurological disease. Overall, this work extends the current concepts of human mTLE pathogenesis to the level of miRNA-mediated gene regulation.


Subject(s)
Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/immunology , Genes, MHC Class II , MicroRNAs , Adult , Aged , Aged, 80 and over , Astrocytes/pathology , Base Sequence , Case-Control Studies , Epilepsy, Temporal Lobe/pathology , Female , Gene Expression Profiling , Genome, Human , Hippocampus/pathology , Humans , Inflammation Mediators/immunology , Male , Middle Aged , Molecular Sequence Data , Neuroglia/pathology , Neurons/physiology
13.
Front Cell Neurosci ; 17: 1284394, 2023.
Article in English | MEDLINE | ID: mdl-38089143

ABSTRACT

Introduction: Constitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network. Methods: We employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment. Results: We found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities. Discussion: Our study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions.

14.
J Neuroinflammation ; 9: 207, 2012 Aug 30.
Article in English | MEDLINE | ID: mdl-22935090

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is a chronic and often treatment-refractory brain disorder characterized by recurrent seizures originating from the hippocampus. The pathogenic mechanisms underlying mTLE remain largely unknown. Recent clinical and experimental evidence supports a role of various inflammatory mediators in mTLE. Here, we performed protein expression profiling of 40 inflammatory mediators in surgical resection material from mTLE patients with and without hippocampal sclerosis, and autopsy controls using a multiplex bead-based immunoassay. In mTLE patients we identified 21 upregulated inflammatory mediators, including 10 cytokines and 7 chemokines. Many of these upregulated mediators have not previously been implicated in mTLE (for example, CCL22, IL-7 and IL-25). Comparing the three patient groups, two main hippocampal expression patterns could be distinguished, pattern I (for example, IL-10 and IL-25) showing increased expression in mTLE + HS patients compared to mTLE-HS and controls, and pattern II (for example, CCL4 and IL-7) showing increased expression in both mTLE groups compared to controls. Upregulation of a subset of inflammatory mediators (for example, IL-25 and IL-7) could not only be detected in the hippocampus of mTLE patients, but also in the neocortex. Principle component analysis was used to cluster the inflammatory mediators into several components. Follow-up analyses of the identified components revealed that the three patient groups could be discriminated based on their unique expression profiles. Immunocytochemistry showed that IL-25 IR (pattern I) and CCL4 IR (pattern II) were localized in astrocytes and microglia, whereas IL-25 IR was also detected in neurons. Our data shows co-activation of multiple inflammatory mediators in hippocampus and neocortex of mTLE patients, indicating activation of multiple pro- and anti-epileptogenic immune pathways in this disease.


Subject(s)
Cytokines/metabolism , Epilepsy, Temporal Lobe/pathology , Hippocampus/metabolism , Immune System/metabolism , Neocortex/metabolism , Up-Regulation/physiology , Adult , Aged , Aged, 80 and over , Analysis of Variance , Cytokines/genetics , Epilepsy, Temporal Lobe/immunology , Female , Hippocampus/pathology , Humans , Male , Middle Aged , Neocortex/pathology , Neuroglia/metabolism , Neurons/metabolism , Principal Component Analysis
15.
Front Neurol ; 13: 797075, 2022.
Article in English | MEDLINE | ID: mdl-35983430

ABSTRACT

Purpose: We investigated the distribution of spikes and HFOs recorded during intraoperative electrocorticography (ioECoG) and tried to elaborate a predictive model for postsurgical outcomes of patients with lateral neocortical temporal lobe epilepsy (TLE) whose mesiotemporal structures are left in situ. Methods: We selected patients with temporal lateral neocortical epilepsy focus who underwent ioECoG-tailored resections without amygdalo-hippocampectomies. We visually marked spikes, ripples (80-250 Hz), and fast ripples (FRs; 250-500 Hz) on neocortical and mesiotemporal channels before and after resections. We looked for differences in event rates and resection ratios between good (Engel 1A) and poor outcome groups and performed logistic regression analysis to identify outcome predictors. Results: Fourteen out of 24 included patients had a good outcome. The poor-outcome patients showed higher rates of ripples on neocortical channels distant from the resection in pre- and post-ioECoG than people with good outcomes (p pre = 0.04, p post = 0.05). Post-ioECoG FRs were found only in poor-outcome patients (N = 3). A prediction model based on regression analysis showed low rates of mesiotemporal post-ioECoG ripples (OR mesio = 0.13, p mesio = 0.04) and older age at epilepsy onset (OR = 1.76, p = 0.04) to be predictors of good seizure outcome. Conclusion: HFOs in ioECoG may help to inform the neurosurgeon of the hippocampus-sparing resection success chance in patients with lateral neocortical TLE.

16.
Neurorehabil Neural Repair ; 36(10-11): 666-677, 2022 11.
Article in English | MEDLINE | ID: mdl-36124975

ABSTRACT

Implantable brain-computer interfaces (BCIs) promise to be a viable means to restore communication in individuals with locked-in syndrome (LIS). In 2016, we presented the world-first fully implantable BCI system that uses subdural electrocorticography electrodes to record brain signals and a subcutaneous amplifier to transmit the signals to the outside world, and that enabled an individual with LIS to communicate via a tablet computer by selecting icons in spelling software. For future clinical implementation of implantable communication-BCIs, however, much work is still needed, for example, to validate these systems in daily life settings with more participants, and to improve the speed of communication. We believe the design and execution of future studies on these and other topics may benefit from the experience we have gained. Therefore, based on relevant literature and our own experiences, we here provide an overview of procedures, as well as recommendations, for recruitment, screening, inclusion, imaging, hospital admission, implantation, training, and support of participants with LIS, for studies on daily life implementation of implantable communication-BCIs. With this article, we not only aim to inform the BCI community about important topics of concern, but also hope to contribute to improved methodological standardization of implantable BCI research.


Subject(s)
Brain-Computer Interfaces , Locked-In Syndrome , Humans , Communication , Brain , Electroencephalography
17.
Front Oncol ; 12: 851803, 2022.
Article in English | MEDLINE | ID: mdl-35356212

ABSTRACT

Background: Until 2015, Dutch guidelines recommended follow-up and biopsy rather than surgery as initial care for suspected low-grade gliomas (LGG). Given evidence that surgery could extend patient survival, our center stopped following this guideline on January 1, 2010 and opted for early maximal safe resection of LGG. The effects of early surgery on the ability of patients to work remains little documented. Methods: A total of 104 patients operated on at our center between January 2000 and April 2013 and diagnosed with the WHO 2016 grade 2 astrocytoma, IDH mutant or oligodendroglioma, IDH mutant and deleted 1p19q were included. The clinical characteristics, survival, and work history of patients operated on before or after January 2010 were obtained from the patients' records and compared. The minimal follow-up was 8 years. Results: As per policy change, the interval between radiological diagnosis and first surgery decreased significantly after 2010. Likewise, before 2010, 25.8% of tumors were initially biopsied, 51.6% were resected under anesthesia, and 22.5% under awake conditions versus 14.3%, 23.8%, and 61.9% after this date (p < 0.001). The severity of permanent postoperative neurological deficits decreased after 2010. In total, 82.5% of the patients returned to work postoperatively before 2010 versus 100% after 2010. The postoperative control of epilepsy increased significantly after 2010 (74.4% vs. 47.9%). The median time from diagnosis to a definitive incapacity to work increased by more than 2 years after 2010 (88.7 vs. 62.2 months). Conclusion: A policy shift towards early aggressive surgical treatment of IDH mutant LGG is safe and prolongs the patients' ability to work.

18.
Lancet Neurol ; 21(11): 982-993, 2022 11.
Article in English | MEDLINE | ID: mdl-36270309

ABSTRACT

BACKGROUND: Intraoperative electrocorticography is used to tailor epilepsy surgery by analysing interictal spikes or spike patterns that can delineate epileptogenic tissue. High-frequency oscillations (HFOs) on intraoperative electrocorticography have been proposed as a new biomarker of epileptogenic tissue, with higher specificity than spikes. We prospectively tested the non-inferiority of HFO-guided tailoring of epilepsy surgery to spike-guided tailoring on seizure freedom at 1 year. METHODS: The HFO trial was a randomised, single-blind, adaptive non-inferiority trial at an epilepsy surgery centre (UMC Utrecht) in the Netherlands. We recruited children and adults (no age limits) who had been referred for intraoperative electrocorticography-tailored epilepsy surgery. Participants were randomly allocated (1:1) to either HFO-guided or spike-guided tailoring, using an online randomisation scheme with permuted blocks generated by an independent data manager, stratified by epilepsy type. Treatment allocation was masked to participants and clinicians who documented seizure outcome, but not to the study team or neurosurgeon. Ictiform spike patterns were always considered in surgical decision making. The primary endpoint was seizure outcome after 1 year (dichotomised as seizure freedom [defined as Engel 1A-B] vs seizure recurrence [Engel 1C-4]). We predefined a non-inferiority margin of 10% risk difference. Analysis was by intention to treat, with prespecified subgroup analyses by epilepsy type and for confounders. This completed trial is registered with the Dutch Trial Register, Toetsingonline ABR.NL44527.041.13, and ClinicalTrials.gov, NCT02207673. FINDINGS: Between Oct 10, 2014, and Jan 31, 2020, 78 individuals were enrolled to the study and randomly assigned (39 to HFO-guided tailoring and 39 to spike-guided tailoring). There was no loss to follow-up. Seizure freedom at 1 year occurred in 26 (67%) of 39 participants in the HFO-guided group and 35 (90%) of 39 in the spike-guided group (risk difference -23·5%, 90% CI -39·1 to -7·9; for the 48 patients with temporal lobe epilepsy, the risk difference was -25·5%, -45·1 to -6·0, and for the 30 patients with extratemporal lobe epilepsy it was -20·3%, -46·0 to 5·4). Pathology associated with poor prognosis was identified as a confounding factor, with an adjusted risk difference of -7·9% (90% CI -20·7 to 4·9; adjusted risk difference -12·5%, -31·0 to 5·9, for temporal lobe epilepsy and 5·8%, -7·7 to 19·5, for extratemporal lobe epilepsy). We recorded eight serious adverse events (five in the HFO-guided group and three in the spike-guided group) requiring hospitalisation. No patients died. INTERPRETATION: HFO-guided tailoring of epilepsy surgery was not non-inferior to spike-guided tailoring on intraoperative electrocorticography. After adjustment for confounders, HFOs show non-inferiority in extratemporal lobe epilepsy. This trial challenges the clinical value of HFOs as an epilepsy biomarker, especially in temporal lobe epilepsy. Further research is needed to establish whether HFO-guided intraoperative electrocorticography holds promise in extratemporal lobe epilepsy. FUNDING: UMCU Alexandre Suerman, EpilepsieNL, RMI Talent Fellowship, European Research Council, and MING Fund.


Subject(s)
Epilepsies, Partial , Epilepsy, Temporal Lobe , Epilepsy , Adult , Child , Humans , Electrocorticography , Single-Blind Method , Netherlands , Epilepsy/surgery , Seizures/surgery , Epilepsies, Partial/surgery
19.
Front Mol Neurosci ; 15: 832133, 2022.
Article in English | MEDLINE | ID: mdl-35310884

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is a chronic disease characterized by recurrent seizures that originate in the temporal lobes of the brain. Anti-epileptic drugs (AEDs) are the standard treatment for managing seizures in mTLE patients, but are frequently ineffective. Resective surgery is an option for some patients, but does not guarantee a postoperative seizure-free period. Therefore, further insight is needed into the pathogenesis of mTLE to enable the design of new therapeutic strategies. Circular RNAs (circRNAs) have been identified as important regulators of neuronal function and have been implicated in epilepsy. However, the mechanisms through which circRNAs contribute to epileptogenesis remain unknown. Here, we determine the circRNA transcriptome of the hippocampus and cortex of mTLE patients by using RNA-seq. We report 333 differentially expressed (DE) circRNAs between healthy individuals and mTLE patients, of which 23 circRNAs displayed significant adjusted p-values following multiple testing correction. Interestingly, hippocampal expression of circ_Satb1, a circRNA derived from special AT-rich sequence binding protein 1 (SATB1), is decreased in both mTLE patients and in experimental epilepsy. Our work shows that circ_Satb1 displays dynamic patterns of neuronal expression in vitro and in vivo. Further, circ_Satb1-specific knockdown using CRISPR/CasRx approaches in hippocampal cultures leads to defects in dendritic spine morphology, a cellular hallmark of mTLE. Overall, our results identify a novel epilepsy-associated circRNA with disease-specific expression and previously unidentified cellular effects that are relevant for epileptogenesis.

20.
J Neurol Surg B Skull Base ; 82(Suppl 3): e79-e87, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306920

ABSTRACT

Objectives Visual dysfunction in patients with pituitary adenomas is a clear indication for endoscopic endonasal transsphenoidal surgery (EETS). However, the visual outcomes vary greatly among patients and it remains unclear what tumor, patient, and surgical characteristics contribute to postoperative visual outcomes. Methods One hundred patients with pituitary adenomas who underwent EETS between January 2011 and June 2015 in a single institution were retrospectively reviewed. General patient characteristics, pre- and postoperative visual status, clinical presentation, tumor characteristics, hormone production, radiological features, and procedural characteristics were evaluated for association with presenting visual signs and visual outcomes postoperatively. Suprasellar tumor extension (SSE) was graded 0 to 4 following a grading system as formulated by Fujimoto et al. Results Sixty-six (66/100) of all patients showed visual field defects (VFD) at the time of surgery, of whom 18% (12/66) were asymptomatic. VFD improved in 35 (35%) patients and worsened in 4 (4%) patients postoperatively. Mean visual acuity (VA) improved from 0.67 preoperatively to 0.84 postoperatively ( p = 0.04). Nonfunctioning pituitary adenomas (NFPAs) and Fujimoto grade were independent predictors of preoperative VFD in the entire cohort ( p = 0.02 and p < 0.01 respectively). A higher grade of SSE was the only factor independently associated with postoperative improvement of VFD ( p = 0.03). NFPA and Fujimoto grade 3 were independent predictors of VA improvement (both p = 0.04). Conclusion EETS significantly improved both VA and VFD for most patients, although a few patients showed deterioration of visual deficits postoperatively. Higher degrees of SSE and NFPA were independent predictors of favorable visual outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL