Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
Add more filters

Country/Region as subject
Publication year range
1.
NMR Biomed ; 37(1): e5032, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37654051

ABSTRACT

Parallel transmit MRI at 7 T has increasingly been adopted in research projects and provides increased signal-to-noise ratios and novel contrasts. However, the interactions of fields in the body need to be carefully considered to ensure safe scanning. Recent advances in physically flexible body coils have allowed for high-field abdominal imaging, but the effects of increased variability on energy deposition need further exploration. The aim of this study was to assess the impact of subject geometry, respiration phase and coil positioning on the specific absorption rate (SAR). Ten healthy subjects (body mass index [BMI] = 25 ± 5 kg m-2 ) were scanned (at 3 T) during exhale breath-hold and images used to generate body models. Seven of these subjects were also scanned during inhale. Simplifications of the coil and body models were first explored, and then finite-difference time-domain simulations were run with a typical eight-channel parallel transmit coil positioned over the abdomen. Simulations were used to generate 10 g averaged SAR (SAR10g ) maps across 100,000 phase settings, and the worst-case scenario 10 g averaged SAR (wocSAR10g ) was identified using trigonometric maximisation. The average maximum SAR10g across the 10 subjects with 1 W input power per channel was 1.77 W kg-1 . Hotspots were always close to the body surface near the muscle wall boundary. The wocSAR10g across the 10 subjects ranged from 2.3 to 3.2 W kg-1 and was inversely correlated to fat volume percentage (R = 8) and BMI (R = 0.6). The coefficient of variation values in SAR10g due to variations in subject geometry, respiration phase and realistic coil repositioning were 12%, 4% and 12%, respectively. This study found that the variability due to realistic coil repositioning was similar to the variability due to differing healthy subject geometries for abdominal imaging. This is important as it suggests that population-based modelling is likely to be more useful than individual modelling in setting safe thresholds for abdominal imaging.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Humans , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging , Respiration
2.
J Magn Reson Imaging ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819593

ABSTRACT

BACKGROUND: In respiratory medicine, there is a need for sensitive measures of regional lung function that can be performed using standard imaging technology, without the need for inhaled or intravenous contrast agents. PURPOSE: To describe VOxel-wise Lung VEntilation (VOLVE), a new method for quantifying regional lung ventilation (V) and perfusion (Q) using free-breathing proton MRI, and to evaluate VOLVE in healthy never-smokers, healthy people with smoking history, and people with chronic obstructive pulmonary disease (COPD). STUDY TYPE: Prospective pilot. POPULATION: Twelve healthy never-smoker participants (age 30.3 ± 12.5 years, five male), four healthy participants with smoking history (>10 pack-years) (age 42.5 ± 18.3 years, one male), and 12 participants with COPD (age 62.8 ± 11.1 years, seven male). FIELD STRENGTH/SEQUENCE: Single-slice free-breathing two-dimensional fast field echo sequence at 3 T. ASSESSMENT: A novel postprocessing was developed to evaluate the MR signal changes in the lung parenchyma using a linear regression-based approach, which makes use of all the data in the time series for maximum sensitivity. V/Q-weighted maps were produced by computing the cross-correlation, lag and gradient between the respiratory/cardiac phase time course and lung parenchyma signal time courses. A comparison of histogram median and skewness values and spirometry was performed. STATISTICAL TESTS: Kruskal-Wallis tests with Dunn's multiple comparison tests to compare VOLVE metrics between groups; Spearman correlation to assess the correlation between MRI and spirometry-derived parameters; and Bland-Altman analysis and coefficient of variation to evaluate repeatability were used. A P-value <0.05 was considered significant. RESULTS: Significant differences between the groups were found for ventilation between healthy never-smoker and COPD groups (median XCCV, LagV, and GradV) and perfusion (median XCCQ, LagQ, and GradQ). Minimal bias and no significant differences between intravisit scans were found (P range = 0.12-0.97). DATA CONCLUSION: This preliminary study showed that VOLVE has potential to provide metrics of function quantification. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

3.
Mol Pharm ; 21(4): 1553-1562, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38440796

ABSTRACT

Oral dosage forms are the most widely and frequently used formulations to deliver active pharmaceutical ingredients (APIs), due to their ease of administration and noninvasiveness. Knowledge of intragastric release rates and gastric mixing is crucial for predicting the API release profile, especially for immediate release formulations. However, knowledge of the intragastric fate of oral dosage forms in vivo to date is limited, particularly for dosage forms administered when the stomach is in the fed state. An improved understanding of gastric food processing, dosage form location, disintegration times, and food effects is essential for greater understanding for effective API formulation design. In vitro standard and controlled modeling has played a significant role in predicting the behavior of dosage forms in vivo. However, discrepancies are reported between in vitro and in vivo disintegration times, with these discrepancies being greatest in the fed state. Studying the fate of a dosage form in vivo is a challenging process, usually requiring the use of invasive methods, such as intubation. Noninvasive, whole body imaging techniques can however provide unique insights into this process. A scoping review was performed systematically to identify and critically appraise published studies using MRI to visualize oral solid dosage forms in vivo in healthy human subjects. The review identifies that so far, an all-purpose robust contrast agent or dosage form type has not been established for dosage form visualization and disintegration studies in the gastrointestinal system. Opportunities have been identified for future studies, with particular focus on characterizing dosage form disintegration for development after the consumption food, as exemplified by the standard Food and Drug Administration (FDA) high fat meal.


Subject(s)
Gastrointestinal Tract , Stomach , Humans , Administration, Oral , Stomach/diagnostic imaging , Contrast Media , Magnetic Resonance Imaging/methods , Dosage Forms , Solubility , Tablets
4.
NMR Biomed ; 36(11): e5001, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37452522

ABSTRACT

The z-spectrum contains many pools with different exchange rates and T2 values, which can make it difficult to interpret in vivo data and complicates the design of experiments aimed at providing sensitivity to one pool. This work aims to characterise the main pools observable with MRI at 7T in the human brain. To achieve this, we acquired z-spectra at multiple saturation powers in the human brain at 7T. We used simulations to optimise the use of particle swarm optimisation (PSO) to fit these data, validating this approach using further simulations and creatine phantoms. We then used the PSO to fit data from grey and white matter for the pool size, exchange rate, and T2 of five proton pools (magnetisation transfer, amides, amines, nuclear Overhauser enhancement NOE-3.5ppm and NOE-1.7ppm in addition to water). We then devised an approach for using PSO to fit z-spectra while limiting the computational burden, and we investigated the sensitivity of the fit to T2 and k for three overlapping pools. We used this to measure the exchange rate of creatine and to show that it varied with temperature, as expected. In the brain we measured a significantly larger pool size in white matter than in grey matter for the magnetisation transfer pool and the NOE-3.5ppm pool. For all other parameters we found no significant difference between grey and white matter. We showed that PSO can be used to fit z-spectra acquired at a range of B1 to provide information about peak position, amplitude, exchange rate, and T2 in vivo in the human brain. These data could provide more sensitivity to change in some clinical conditions and will also provide key information for further experimental design.


Subject(s)
Brain Neoplasms , Creatine , Humans , Brain/diagnostic imaging , Gray Matter , Algorithms , Magnetic Resonance Imaging
5.
PLoS Biol ; 18(5): e3000676, 2020 05.
Article in English | MEDLINE | ID: mdl-32463837

ABSTRACT

We have used magnetic resonance imaging (MRI) to provide important new insights into the function of the human placenta in utero. We have measured slow net flow and high net oxygenation in the placenta in vivo, which are consistent with efficient delivery of oxygen from mother to fetus. Our experimental evidence substantiates previous hypotheses on the effects of spiral artery remodelling in utero and also indicates rapid venous drainage from the placenta, which is important because this outflow has been largely neglected in the past. Furthermore, beyond Braxton Hicks contractions, which involve the entire uterus, we have identified a new physiological phenomenon, the 'utero-placental pump', by which the placenta and underlying uterine wall contract independently of the rest of the uterus, expelling maternal blood from the intervillous space.


Subject(s)
Placenta/physiology , Placental Circulation , Adult , Blood Flow Velocity , Case-Control Studies , Female , Humans , Magnetic Resonance Angiography , Oxygen/metabolism , Placenta/diagnostic imaging , Pre-Eclampsia/physiopathology , Pregnancy , Uterus/physiology , Young Adult
6.
Magn Reson Med ; 86(2): 611-624, 2021 08.
Article in English | MEDLINE | ID: mdl-33749010

ABSTRACT

PURPOSE: Achieving a desired RF transmit field ( B1+ ) in small regions of interest is critical for single-voxel MRS at ultrahigh field. Radio-frequency (RF) shimming, using parallel transmission, requires B1+ mapping and optimization, which limits its ease of use. This work aimed to generate calibration-free RF shims for predefined target regions of interest, which can be applied to any participant, to produce a desired absolute magnitude B1+ (| B1+ |). METHODS: The RF shims were found offline by joint optimization on a database comprising B1+ maps from 11 subjects, considering regions of interest in occipital cortex, hippocampus and posterior cingulate, as well as whole brain. The | B1+ | achieved was compared with a tailored shimming approach, and MR spectra were acquired using tailored and calibration-free shims in 4 participants. Global and local 10g specific-absorption-rate deposition were estimated using Duke and Ella dielectric models. RESULTS: There was no difference in the mean | B1+ | produced using calibration-free versus tailored RF shimming in the occipital cortex (p = .15), hippocampus (p = .5), or posterior cingulate (p = .98), although differences were observed in the RMS error | B1+ |. Spectra acquired using calibration-free shims had similar SNR and low residual water signal. Under identical power settings, specific-absorption-rate deposition was lower compared with operating in quadrature mode. For example, the total head specific absorption rate was around 35% less for the occipital cortex. CONCLUSION: This work demonstrates that static RF shims, optimized offline for small regions, avoid the need for B1+ mapping and optimization for each region of interest and participant. Furthermore, power settings may be increased when using calibration-free shims, to better take advantage of RF shimming.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Brain/diagnostic imaging , Calibration , Head , Humans
7.
J Magn Reson Imaging ; 53(5): 1422-1431, 2021 05.
Article in English | MEDLINE | ID: mdl-33331088

ABSTRACT

BACKGROUND: Increased small bowel permeability leads to bacterial translocation, associated with significant morbidity and mortality. Biomarkers are needed to evaluate these changes in vivo, stratify an individual's risk, and evaluate the efficacy of interventions. MRI is an established biomarker of small bowel inflammation. PURPOSE: To characterize changes in the small bowel with quantitative MRI measures associated with increased permeability induced by indomethacin. STUDY TYPE: Prospective single-center, double-blind, two-way crossover provocation study. SUBJECTS: A provocation cohort (22 healthy volunteers) and intrasubject reproducibility cohort (8 healthy volunteers). FIELD STRENGTH/SEQUENCE: 2D balanced turbo field echo sequences to measure small bowel wall thickness, T2 , and motility acquired at 3T. ASSESSMENT: Participants were randomized to receive indomethacin or placebo prior to assessment. After a minimum 2-week washout, measures were repeated with the alternative allocation. MR measures (wall thickness, T2 , motility) at each study visit were compared to the reference standard 2-hour lactulose/mannitol urinary excretion ratio (LMR) test performed by a lab technician. All analyses were performed blind. STATISTICAL TESTS: Normality was tested (Shapiro-Wilk's test). Paired testing (Student's t-test or Wilcoxon) determined the significance of paired differences with indomethacin provocation. Pearson's correlation coefficient compared significant measures with indomethacin provocation to LMR. Intrasubject (intraclass correlation) and interrater variability (Bland-Altman) were assessed. RESULTS: Indomethacin provocation induced a significant increase in LMR compared to placebo (P < 0.05) and a significant increase in small bowel T2 (0.12 seconds compared to placebo 0.07 seconds, P < 0.05). Small bowel wall thickness (P = 0.17) and motility (P = 0.149) showed no significant change. T2 and LMR were positively correlated (r = 0.68, P < 0.05). T2 measurements were robust to interobserver (intraclass correlation 0.89) and intrasubject variability (Bland-Altman bias of 0.005 seconds, 95% confidence interval [CI] -0.04 to +0.05 seconds, and 0.0006 seconds, 95% CI -0.05 to +0.06 seconds). DATA CONCLUSION: MR measures of small bowel wall T2 were significantly increased following indomethacin provocation and correlated with 2-hour LMR test results. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Intestine, Small , Magnetic Resonance Imaging , Humans , Intestine, Small/diagnostic imaging , Permeability , Prospective Studies , Reproducibility of Results
8.
MAGMA ; 34(6): 791-804, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34089407

ABSTRACT

OBJECTIVE: Quantitative Magnetic Resonance Imaging sequences have been investigated as objective imaging biomarkers of fibrosis and inflammation in Crohn's disease. AIM: To determine the repeatability and inter- and intra-observer agreement of these measures in the prepared small bowel wall. METHODS: Ten healthy participants were scanned at 3 T on 2 separate occasions using T1 and T2 relaxometry, IVIM-DWI and MT sequences. Test-retest repeatability was assessed using the coefficient of variation (CoV) and intra-class correlation coefficients (ICCs) were used to evaluate the intra- and inter-observer agreement RESULTS: Test-retest repeatability in the bowel wall was excellent for apparent diffusion coefficient (ADC), magnetisation transfer ratio (MTR), T1, and diffusion coefficient D (CoV 5%, 7%, 8%, and 10%, respectively), good for perfusion fraction (PF) (CoV 20%) and acceptable for T2 (CoV 21%). Inter-observer agreement was good for the T2, D and ADC (ICC = 0.89, 0.86, 0.76, respectively) and moderate for T1 (ICC = 0.55). Intra-observer agreement was similar to inter-observer agreement. DISCUSSION: This study showed variable results between the different parameters measured. Test-retest repeatability was at least acceptable for all parameters except pseudo-diffusion coefficient D*. Good inter- and intra-observer agreement was obtained for T2, ADC and D, with these parameters performing best in this technical validation study.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Healthy Volunteers , Humans , Prospective Studies , Reproducibility of Results
9.
Magn Reson Med ; 83(3): 1096-1108, 2020 03.
Article in English | MEDLINE | ID: mdl-31524306

ABSTRACT

PURPOSE: This work demonstrates specifically tailored microbubble-based preparations and their suitability as MRI contrast agents for ingestion and measuring temporal and spatial pressure variation in the human stomach. METHODS: Enhanced alginate spheres were prepared by incorporating gas-filled microbubbles into sodium alginate solution followed by the polymerization of the mixture in an aqueous calcium lactate solution. The microbubbles were prepared with a phospholipid shell and perfluorocarbon gas filling, using a mechanical cavitational agitation regime. The NMR signal changes to externally applied pressure and coming from the enhanced alginate spheres were acquired and compared with that of alginate spheres without microbubbles. In vivo investigations were also carried out on healthy volunteers to measure the pressure variation in the stomach. RESULTS: The MR signal changes in the contrast agent exhibits a linear sensitivity of approximately 40% per bar, as opposed to no measurable signal change seen in the control gas-free spheres. This novel contrast agent also demonstrates an excellent stability in simulated gastric conditions, including at body temperature. In vivo studies showed that the signal change exhibited in the meal within the antrum region is between 5% and 10%, but appears to come from both pressure changes and partial volume artifacts. CONCLUSION: This study demonstrates that alginate spheres with microbubbles can be used as an MRI contrast agent to measure pressure changes. The peristaltic movement within the stomach is seen to substantially alter the overall signal intensity of the contrast agent meal. Future work must focus on improving the contrast agent's sensitivity to pressure changes.


Subject(s)
Alginates/chemistry , Contrast Media/chemistry , Magnetic Resonance Imaging , Microbubbles , Stomach/diagnostic imaging , Stomach/pathology , Adult , Body Temperature , Female , Fluorocarbons , Gases , Gastric Acid/chemistry , Humans , Linear Models , Male , Middle Aged , Phospholipids , Pressure
10.
J Pediatr Gastroenterol Nutr ; 71(5): 604-611, 2020 11.
Article in English | MEDLINE | ID: mdl-33093366

ABSTRACT

OBJECTIVE: In England, 27,500 children are referred annually to hospital with constipation. An objective measure of whole gut transit time (WGTT) could aid management. The current standard WGTT assessment, the x-ray radiopaque marker (ROM) test, gives poor definition of colonic anatomy and the radiation dose required is undesirable in children. Our objective was to develop an alternative magnetic resonance imaging (MRI) WGTT measure to the x-ray ROM test and to demonstrate its initial feasibility in paediatric constipation. METHODS: With the Nottingham Young Person's Advisory Group we developed a small (8 × 4 mm), inert polypropylene capsule shell filled with MRI-visible fat emulsion. The capsule can be imaged using MRI fat and water in-phase and out-of-phase imaging. Sixteen patients with constipation and 19 healthy participants aged 7 to 18 years old were recruited. Following a common ROM protocol, the participants swallowed 24 mini-capsules each day for 3 days and were imaged on days 4 and 7 using MRI. The number of successful studies (feasibility) and WGTT were assessed. Participants' EuroQoL Visual Analogue Scale were also collected and compared between the day before the taking the first set of mini-capsules to the day after the last MRI study day. RESULTS: The mini-capsules were imaged successfully in the colon of all participants. The WGTT was 78 ±â€Š35 hours (mean ±â€Šstandard deviation) for patients, and 36 ±â€Š16 hours, P < 0.0001 for healthy controls. Carrying out the procedures did not change the EuroQoL Visual Analogue Scale scores before and after the procedures. CONCLUSIONS: Magnetic Resonance Imaging in Paediatric Constipation was a first-in-child feasibility study of a new medical device to measure WGTT in paediatric constipation using MRI. The study showed that the new method is feasible and is well tolerated.


Subject(s)
Constipation , Gastrointestinal Transit , Adolescent , Child , Colon/diagnostic imaging , Constipation/diagnostic imaging , England , Feasibility Studies , Humans , Magnetic Resonance Imaging
11.
NMR Biomed ; 32(3): e4061, 2019 03.
Article in English | MEDLINE | ID: mdl-30657208

ABSTRACT

A better understanding of the coupling between changes in cerebral blood flow (CBF) and cerebral blood volume (CBV) is vital for furthering our understanding of the BOLD response. The aim of this study was to measure CBF-CBV coupling in different vascular compartments during neural activation. Three haemodynamic parameters were measured during a visual stimulus. Look-Locker flow-sensitive alternating inversion recovery was used to measure changes in CBF and arterial CBV (CBVa ) using sequence parameters optimized for each contrast. Changes in total CBV (CBVtot ) were measured using a gadolinium-based contrast agent technique. Haemodynamic changes were extracted from a region of interest based on voxels that were activated in the CBF experiments. The CBF-CBVtot coupling constant αtot was measured as 0.16 ± 0.14 and the CBF-CBVa coupling constant αa was measured as 0.65 ± 0.24. Using a two-compartment model of the vasculature (arterial and venous), the change in venous CBV (CBVv ) was predicted for an assumed value of baseline arterial and venous blood volume. These results will enhance the accuracy and reliability of applications that rely on models of the BOLD response, such as calibrated BOLD.


Subject(s)
Brain/blood supply , Cerebral Blood Volume/physiology , Cerebrovascular Circulation/physiology , Adult , Hemodynamics , Humans , Photic Stimulation , Signal Processing, Computer-Assisted , Time Factors , Young Adult
12.
Eur Radiol ; 29(4): 2027-2033, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30280247

ABSTRACT

OBJECTIVES: To assess the feasibility of using an optimised ultra-high-field high-spatial-resolution low-distortion arterial spin labelling (ASL) MRI acquisition to measure focal haemodynamic pathology in cortical lesions (CLs) in multiple sclerosis (MS). METHODS: Twelve MS patients (eight female, mean age 50 years; range 35-64 years) gave informed consent and were scanned on a 7 Tesla Philips Achieva scanner. Perfusion data were collected at multiple post-labelling delay times using a single-slice flow-sensitive alternating inversion recovery ASL protocol with a balanced steady-state free precession readout scheme. CLs were identified using a high-resolution Phase-Sensitive Inversion Recovery (PSIR) scan. Significant differences in perfusion within CLs compared to immediately surrounding normal appearing grey matter (NAGMlocal) and total cortical normal appearing grey matter (NAGMcortical) were assessed using paired t-tests. RESULTS: Forty CLs were identified in PSIR scans that overlapped with the ASL acquisition coverage. After excluding lesions due to small size or intravascular contamination, 27 lesions were eligible for analysis. Mean perfusion was 40 ± 25 ml/100 g/min in CLs, 53 ± 12 ml/100 g/min in NAGMlocal, and 53 ± 8 ml/100 g/min in NAGMcortical. CL perfusion was significantly reduced by 23 ± 9% (mean ± SE, p = 0.013) and 26 ± 9% (p = 0.006) relative to NAGMlocal and NAGMcortical perfusion, respectively. CONCLUSION: This is the first ASL MRI study quantifying CL perfusion in MS at 7 Tesla, demonstrating that an optimised ASL acquisition is sensitive to focal haemodynamic pathology previously observed using dynamic susceptibility contrast MRI. ASL requires no exogenous contrast agent, making it a more appropriate tool to monitor longitudinal perfusion changes in MS, providing a new window to study lesion development. KEY POINTS: • Perfusion can be quantified within cortical lesions in multiple sclerosis using an optimised high spatial resolution arterial spin Labelling MRI acquisition at ultra-high-field. • The majority of cortical lesions assessed using arterial spin labelling are hypo-perfused compared to normal appearing grey matter, in agreement with dynamic susceptibility contrast MRI literature. • Arterial spin labelling MRI, which does not involve the injection of a contrast agent, is a safe and appropriate technique for repeat scanning of an individual patient.


Subject(s)
Cerebral Arteries/diagnostic imaging , Cerebrovascular Circulation/physiology , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnosis , Regional Blood Flow/physiology , Adult , Cerebral Arteries/physiopathology , Female , Humans , Male , Middle Aged , Multiple Sclerosis/physiopathology , Spin Labels
13.
Br J Nutr ; 122(10): 1142-1154, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31709970

ABSTRACT

Whole-grain cereal breakfast consumption has been associated with beneficial effects on glucose and insulin metabolism as well as satiety. Pearl millet is a popular ancient grain variety that can be grown in hot, dry regions. However, little is known about its health effects. The present study investigated the effect of a pearl millet porridge (PMP) compared with a well-known Scottish oats porridge (SOP) on glycaemic, gastrointestinal, hormonal and appetitive responses. In a randomised, two-way crossover trial, twenty-six healthy participants consumed two isoenergetic/isovolumetric PMP or SOP breakfast meals, served with a drink of water. Blood samples for glucose, insulin, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide (GIP), peptide YY, gastric volumes and appetite ratings were collected 2 h postprandially, followed by an ad libitum meal and food intake records for the remainder of the day. The incremental AUC (iAUC2h) for blood glucose was not significantly different between the porridges (P > 0·05). The iAUC2h for gastric volume was larger for PMP compared with SOP (P = 0·045). The iAUC2h for GIP concentration was significantly lower for PMP compared with SOP (P = 0·001). Other hormones and appetite responses were similar between meals. In conclusion, the present study reports, for the first time, data on glycaemic and physiological responses to a pearl millet breakfast, showing that this ancient grain could represent a sustainable alternative with health-promoting characteristics comparable with oats. GIP is an incretin hormone linked to TAG absorption in adipose tissue; therefore, the lower GIP response for PMP may be an added health benefit.


Subject(s)
Appetite/drug effects , Avena , Blood Glucose , Breakfast , Gastrointestinal Motility/drug effects , Pennisetum , Adult , Cross-Over Studies , Female , Humans , Male , Young Adult
14.
Proc Natl Acad Sci U S A ; 113(47): 13510-13515, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27830650

ABSTRACT

The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology.


Subject(s)
Cerebral Cortex/physiology , Electrophysiological Phenomena , Myelin Sheath/metabolism , Nerve Net/physiology , Adult , Humans , Magnetic Resonance Imaging , Magnetoencephalography , Male
15.
Proc Natl Acad Sci U S A ; 113(14): 3879-84, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27001827

ABSTRACT

Dysfunctional reward processing is implicated in various mental disorders, including attention deficit hyperactivity disorder (ADHD) and addictions. Such impairments might involve different components of the reward process, including brain activity during reward anticipation. We examined brain nodes engaged by reward anticipation in 1,544 adolescents and identified a network containing a core striatal node and cortical nodes facilitating outcome prediction and response preparation. Distinct nodes and functional connections were preferentially associated with either adolescent hyperactivity or alcohol consumption, thus conveying specificity of reward processing to clinically relevant behavior. We observed associations between the striatal node, hyperactivity, and the vacuolar protein sorting-associated protein 4A (VPS4A) gene in humans, and the causal role of Vps4 for hyperactivity was validated in Drosophila Our data provide a neurobehavioral model explaining the heterogeneity of reward-related behaviors and generate a hypothesis accounting for their enduring nature.


Subject(s)
Anticipation, Psychological/physiology , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/physiopathology , Brain Mapping , Corpus Striatum/physiopathology , Endosomal Sorting Complexes Required for Transport/genetics , Reward , Vacuolar Proton-Translocating ATPases/genetics , ATPases Associated with Diverse Cellular Activities , Adolescent , Alcohol Drinking/psychology , Animals , Child , Drosophila , Female , Forecasting , Genome-Wide Association Study , Haplotypes/genetics , Humans , Male , Motivation , Neuropsychological Tests
16.
Neuroimage ; 167: 31-40, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29111410

ABSTRACT

Chemical Exchange Saturation Transfer (CEST) has been used to assess healthy and pathological tissue in both animals and humans. However, the CEST signal from blood has not been fully assessed. This paper presents the CEST and nuclear Overhauser enhancement (NOE) signals detected in human blood measured via z-spectrum analysis. We assessed the effects of blood oxygenation levels, haematocrit, cell structure and pH upon the z-spectrum in ex vivo human blood for different saturation powers at 7T. The data were analysed using Lorentzian difference (LD) model fitting and AREX (to compensate for changes in T1), which have been successfully used to study CEST effects in vivo. Full Bloch-McConnell fitting was also performed to provide an initial estimate of exchange rates and transverse relaxation rates of the various pools. CEST and NOE signals were observed at 3.5 ppm, -1.7 ppm and -3.5 ppm and were found to originate primarily from the red blood cells (RBCs), although the amide proton transfer (APT) CEST effect, and NOEs showed no dependence upon oxygenation levels. Upon lysing, the APT and NOE signals fell significantly. Different pH levels in blood resulted in changes in both the APT and NOE (at -3.5 ppm), which suggests that this NOE signal is in part an exchange relayed process. These results will be important for assessing in vivo z-spectra.


Subject(s)
Blood Chemical Analysis/methods , Blood/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Humans , Male
17.
18.
Magn Reson Med ; 79(2): 789-795, 2018 02.
Article in English | MEDLINE | ID: mdl-28626999

ABSTRACT

PURPOSE: This work describes the development of a method to measure the variation of apparent diffusion coefficient (ADC) with diffusion time (Δ) in the brachial plexus, as a potential method of probing microstructure. METHODS: Diffusion-weighted MRI with body signal suppression was used to highlight the nerves from surrounding tissues, and sequence parameters were optimized for sensitivity to change with diffusion time. A porous media-restricted diffusion model based on the Latour-Mitra equation was fitted to the diffusion time-dependent ADC data from the brachial plexus nerves and cord. RESULTS: The ADC was observed to reduce at long diffusion times, confirming that diffusion was restricted in the nerves and cord in healthy subjects. T2 of the nerves was measured to be 80 ± 5 ms, the diffusion coefficient was found to vary from (1.5 ± 0.1) × 10-3 mm2 /s at a diffusion time of 18.3 ms to (1.0 ± 0.2) × 10-3 mm2 /s at a diffusion time of 81.3 ms. CONCLUSION: A novel method of probing restricted diffusion in the brachial plexus was developed. Resulting parameters were comparable with values obtained previously on biological systems. Magn Reson Med 79:789-795, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brachial Plexus/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Adult , Computer Simulation , Female , Humans , Male , Middle Aged , Phantoms, Imaging
19.
Magn Reson Med ; 79(1): 22-30, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28303591

ABSTRACT

PURPOSE: In vivo 31 P magnetic resonance spectroscopy (MRS) magnetization transfer (MT) provides a direct measure of neuronal activity at the metabolic level. This work aims to use functional 31 P MRS-MT to investigate the change in cerebral adenosine triphosphate (ATP) metabolic rates in healthy adults upon repeated visual stimuli. METHODS: A magnetization saturation transfer sequence with narrowband selective saturation of γ-ATP was developed for 31 P MT experiments at 3 T. RESULTS: Using progressive saturation of γ-ATP, the intrinsic T1 relaxation times of phosphocreatine (PCr) and inorganic phosphate (Pi) at 3 T were measured to be 5.1 ± 0.8 s and 3.0 ± 1.4 s, respectively. Using steady-state saturation of γ-ATP, a significant 24% ± 14% and 11% ± 7% increase in the forward creatine kinase (CK) pseudo-first-order reaction rate constant, k1 , was observed upon visual stimulation in the first and second cycles, respectively, of a paradigm consisting of 10-minute rest followed by 10-minute stimulation, with the measured baseline k1 being 0.35 ± 0.04 s-1 . No significant changes in forward ATP synthase reaction rate, PCr/γ-ATP, Pi/γ-ATP, and nicotinamide adenine dinucleotide/γ-ATP ratios, or intracellular pH were detected upon stimulation. CONCLUSION: This work demonstrates the potential of studying cerebral bioenergetics using functional 31 P MRS-MT to determine the change in the forward CK reaction rate at 3 T. Magn Reson Med 79:22-30, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Adenosine Triphosphate/chemistry , Brain Mapping/methods , Magnetic Resonance Spectroscopy , Neurons/pathology , Phosphorus Isotopes/chemistry , Brain/diagnostic imaging , Creatine Kinase/metabolism , Humans , Hydrogen-Ion Concentration , Kinetics , Magnetics , Models, Statistical , Monte Carlo Method
20.
Brain ; 140(5): 1212-1219, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28369215

ABSTRACT

Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans.


Subject(s)
CA3 Region, Hippocampal/pathology , Limbic Encephalitis/pathology , Potassium Channels, Voltage-Gated/immunology , Proteins/immunology , Adult , Aged , Amnesia/complications , Amnesia/pathology , Atrophy/complications , Atrophy/pathology , Autoantibodies/immunology , Case-Control Studies , Female , Gray Matter/pathology , Humans , Intracellular Signaling Peptides and Proteins , Limbic Encephalitis/complications , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL