Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
EMBO J ; 42(1): e111251, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36326833

ABSTRACT

Maintenance of stemness is tightly linked to cell cycle regulation through protein phosphorylation by cyclin-dependent kinases (CDKs). However, how this process is reversed during differentiation is unknown. We report here that exit from stemness and differentiation of pluripotent cells along the neural lineage are controlled by CDC14, a CDK-counteracting phosphatase whose function in mammals remains obscure. Lack of the two CDC14 family members, CDC14A and CDC14B, results in deficient development of the neural system in the mouse and impairs neural differentiation from embryonic stem cells (ESCs). Mechanistically, CDC14 directly dephosphorylates specific proline-directed Ser/Thr residues of undifferentiated embryonic transcription Factor 1 (UTF1) during the exit from stemness, triggering its proteasome-dependent degradation. Multiomic single-cell analysis of transcription and chromatin accessibility in differentiating ESCs suggests that increased UTF1 levels in the absence of CDC14 prevent the proper firing of bivalent promoters required for differentiation. CDC14 phosphatases are dispensable for mitotic exit, suggesting that CDC14 phosphatases have evolved to control stemness rather than cell cycle exit and establish the CDK-CDC14 axis as a critical molecular switch for linking cell cycle regulation and self-renewal.


Subject(s)
Cell Cycle Proteins , Saccharomyces cerevisiae Proteins , Animals , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Cyclin-Dependent Kinases/metabolism , Cell Cycle , Phosphorylation/physiology , Mitosis , Saccharomyces cerevisiae Proteins/metabolism , Mammals
2.
EMBO J ; 39(16): e104324, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32614092

ABSTRACT

Full differentiation potential along with self-renewal capacity is a major property of pluripotent stem cells (PSCs). However, the differentiation capacity frequently decreases during expansion of PSCs in vitro. We show here that transient exposure to a single microRNA, expressed at early stages during normal development, improves the differentiation capacity of already-established murine and human PSCs. Short exposure to miR-203 in PSCs (miPSCs) induces a transient expression of 2C markers that later results in expanded differentiation potency to multiple lineages, as well as improved efficiency in tetraploid complementation and human-mouse interspecies chimerism assays. Mechanistically, these effects are at least partially mediated by direct repression of de novo DNA methyltransferases Dnmt3a and Dnmt3b, leading to transient and reversible erasure of DNA methylation. These data support the use of transient exposure to miR-203 as a versatile method to reset the epigenetic memory in PSCs, and improve their effectiveness in regenerative medicine.


Subject(s)
Cell Differentiation , DNA Methylation , Epigenesis, Genetic , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Animals , Cell Line , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Humans , Induced Pluripotent Stem Cells/cytology , Mice , MicroRNAs/genetics , DNA Methyltransferase 3B
3.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36519825

ABSTRACT

MOTIVATION: Transposable elements (TE) have played a major role in configuring the structures of mammalian genomes through evolution. In normal conditions, the expression of these elements is repressed by different epigenetic regulation mechanisms such as DNA methylation, histone modification and regulation by small RNAs. TE re-activation is associated with stemness potential acquisition, regulation of innate immunity and disease, such as cancer. However, the vast majority of current knowledge in the field is based on bulk expression studies, and very little is known on cell-type- or state-specific expression of TE-derived transcripts. Therefore, cost-efficient single-cell-resolution TE expression analytical approaches are needed. RESULTS: We have implemented an analytical approach based on pseudoalignment to consensus sequences to incorporate TE expression information to scRNAseq data. AVAILABILITY AND IMPLEMENTATION: All the data and code implemented are available as Supplementary data and in: https://github.com/jmzvillarreal/kallisto_TE_scRNAseq. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Transposable Elements , Epigenesis, Genetic , Animals , Single-Cell Gene Expression Analysis , Exome Sequencing , RNA , Mammals/genetics
4.
Nucleic Acids Res ; 50(21): 12149-12165, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36453993

ABSTRACT

In mammalian cells, chromosomal replication starts at thousands of origins at which replisomes are assembled. Replicative stress triggers additional initiation events from 'dormant' origins whose genomic distribution and regulation are not well understood. In this study, we have analyzed origin activity in mouse embryonic stem cells in the absence or presence of mild replicative stress induced by aphidicolin, a DNA polymerase inhibitor, or by deregulation of origin licensing factor CDC6. In both cases, we observe that the majority of stress-responsive origins are also active in a small fraction of the cell population in a normal S phase, and stress increases their frequency of activation. In a search for the molecular determinants of origin efficiency, we compared the genetic and epigenetic features of origins displaying different levels of activation, and integrated their genomic positions in three-dimensional chromatin interaction networks derived from high-depth Hi-C and promoter-capture Hi-C data. We report that origin efficiency is directly proportional to the proximity to transcriptional start sites and to the number of contacts established between origin-containing chromatin fragments, supporting the organization of origins in higher-level DNA replication factories.


Subject(s)
Chromatin , Replication Origin , Animals , Mice , Replication Origin/genetics , Chromatin/genetics , Mouse Embryonic Stem Cells/metabolism , DNA Replication/genetics , Cell Cycle Proteins/metabolism , Mammals/genetics
5.
Breast Cancer Res ; 25(1): 91, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37542268

ABSTRACT

A hallmark of many malignant tumors is dedifferentiated (immature) cells bearing slight or no resemblance to the normal cells from which the cancer originated. Tumor dedifferentiated cells exhibit a higher capacity to survive to chemo and radiotherapies and have the ability to incite tumor relapse. Inducing cancer cell differentiation would abolish their self-renewal and invasive capacity and could be combined with the current standard of care, especially in poorly differentiated and aggressive tumors (with worst prognosis). However, differentiation therapy is still in its early stages and the intrinsic complexity of solid tumor heterogeneity demands innovative approaches in order to be efficiently translated into the clinic. We demonstrate here that microRNA 203, a potent driver of differentiation in pluripotent stem cells (ESCs and iPSCs), promotes the differentiation of mammary gland tumor cells. Combining mouse in vivo approaches and both mouse and human-derived tridimensional organoid cultures, we report that miR-203 influences the self-renewal capacity, plasticity and differentiation potential of breast cancer cells and prevents tumor cell growth in vivo. Our work sheds light on differentiation-based antitumor therapies and offers miR-203 as a promising tool for directly confronting the tumor-maintaining and regeneration capability of cancer cells.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Mice , Animals , Female , MicroRNAs/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Neoplasm Recurrence, Local/pathology , Cell Differentiation/genetics , Cell Proliferation/genetics , Neoplastic Stem Cells/pathology
6.
EMBO J ; 38(19): e101688, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31475747

ABSTRACT

Lymphatic vessels are essential for skin fluid homeostasis and immune cell trafficking. Whether the lymphatic vasculature is associated with hair follicle regeneration is, however, unknown. Here, using steady and live imaging approaches in mouse skin, we show that lymphatic vessels distribute to the anterior permanent region of individual hair follicles, starting from development through all cycle stages and interconnecting neighboring follicles at the bulge level, in a stem cell-dependent manner. Lymphatic vessels further connect hair follicles in triads and dynamically flow across the skin. At the onset of the physiological stem cell activation, or upon pharmacological or genetic induction of hair follicle growth, lymphatic vessels transiently expand their caliber suggesting an increased tissue drainage capacity. Interestingly, the physiological caliber increase is associated with a distinct gene expression correlated with lymphatic vessel reorganization. Using mouse genetics, we show that lymphatic vessel depletion blocks hair follicle growth. Our findings point toward the lymphatic vasculature being important for hair follicle development, cycling, and organization, and define lymphatic vessels as stem cell niche components, coordinating connections at tissue-level, thus provide insight into their functional contribution to skin regeneration.


Subject(s)
Hair Follicle/growth & development , Lymphatic Vessels/metabolism , Regeneration , Skin Physiological Phenomena , Animals , Cell Cycle , Mice , Stem Cell Niche
7.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30923829

ABSTRACT

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Subject(s)
Apoptosis , Cell Differentiation , Chromatin/metabolism , Histones/metabolism , Lysine/metabolism , Myeloid Cells/metabolism , Acetylation , Animals , Cells, Cultured , Chromatin/genetics , Epigenesis, Genetic , Humans , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/cytology , Protein Processing, Post-Translational , Transcription, Genetic
8.
Int J Cancer ; 146(2): 521-530, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31403184

ABSTRACT

It is critical to identify biomarkers and functional networks associated with aggressive thyroid cancer to anticipate disease progression and facilitate personalized patient management. We performed miRNome sequencing of 46 thyroid tumors enriched with advanced disease patients with a median follow-up of 96 months. MiRNome profiles correlated with tumor-specific histopathological and molecular features, such as stromal cell infiltration and tumor driver mutation. Differential expression analysis revealed a consistent hsa-miR-139-5p downexpression in primary carcinomas from patients with recurrent/metastatic disease compared to disease-free patients, sustained in paired local metastases and validated in publicly available thyroid cancer series. Exogenous expression of hsa-miR-139-5p significantly reduced migration and proliferation of anaplastic thyroid cancer cells. Proteomic analysis indicated RICTOR, SMAD2/3 and HNRNPF as putative hsa-miR-139-5p targets in our cell system. Abundance of HNRNPF mRNA, encoding an alternative splicing factor involved in cryptic exon inclusion/exclusion, inversely correlated with hsa-miR-139-5p expression in human tumors. RNA sequencing analysis revealed 174 splicing events differentially regulated upon HNRNPF repression in our cell system, affecting genes involved in RTK/RAS/MAPK and PI3K/AKT/MTOR signaling cascades among others. These results point at the hsa-miR-139-5p/HNRNPF axis as a novel regulatory mechanism associated with the modulation of major thyroid cancer signaling pathways and tumor virulence.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics , MicroRNAs/metabolism , Thyroid Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Alternative Splicing/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease-Free Survival , Female , Follow-Up Studies , Gene Expression Profiling , Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Signal Transduction/genetics , Survival Rate , Thyroid Gland/pathology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology
9.
BMC Cancer ; 18(1): 430, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29661169

ABSTRACT

BACKGROUND: Precursor T-cell lymphoblastic lymphomas (T-LBL) are rare aggressive hematological malignancies that mainly develop in children. As in other cancers, the loss of cell cycle control plays a prominent role in the pathogenesis in these malignancies that is primarily attributed to loss of CDKN2A (encoding protein p16INK4A). However, the impact of the deregulation of other genes such as CDKN1C, E2F1, and TP53 remains to be clarified. Interestingly, experiments in mouse models have proven that conditional T-cell specific deletion of Cdkn1c gene may induce a differentiation block at the DN3 to DN4 transition, and that the loss of this gene in the absence of Tp53 led to aggressive thymic lymphomas. RESULTS: In this manuscript, we demonstrated that the simultaneous deregulation of CDKN1C, E2F1, and TP53 genes by epigenetic mechanisms and/or the deregulation of specific microRNAs, together with additional impairing of TP53 function by the expression of dominant-negative isoforms are common features in primary human T-LBLs. CONCLUSIONS: Previous experimental work in mice revealed that T-cell specific deletion of Cdkn1c accelerates lymphomagenesis in the absence of Tp53. If, as expected, the consequences of the deregulation of the CDKN1C-E2F1-TP53 axis were the same as those experimentally demonstrated in mouse models, the disruption of this axis might be useful to predict tumor aggressiveness, and to provide the basis towards the development of potential therapeutic strategiesin human T-LBL.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57/genetics , E2F1 Transcription Factor/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Tumor Suppressor Protein p53/genetics , Adolescent , Adult , Animals , Child , Epigenesis, Genetic/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Sequence Analysis, RNA , Signal Transduction/genetics , Young Adult
10.
Nat Commun ; 15(1): 1878, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499523

ABSTRACT

The metabolic functions of the liver are spatially organized in a phenomenon called zonation, linked to the differential exposure of portal and central hepatocytes to nutrient-rich blood. The mTORC1 signaling pathway controls cellular metabolism in response to nutrients and insulin fluctuations. Here we show that simultaneous genetic activation of nutrient and hormone signaling to mTORC1 in hepatocytes results in impaired establishment of postnatal metabolic and zonal identity of hepatocytes. Mutant hepatocytes fail to upregulate postnatally the expression of Frizzled receptors 1 and 8, and show reduced Wnt/ß-catenin activation. This defect, alongside diminished paracrine Wnt2 ligand expression by endothelial cells, underlies impaired postnatal maturation. Impaired zonation is recapitulated in a model of constant supply of nutrients by parenteral nutrition to piglets. Our work shows the role of hepatocyte sensing of fluctuations in nutrients and hormones for triggering a latent metabolic zonation program.


Subject(s)
Endothelial Cells , Liver , Swine , Animals , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Hepatocytes/metabolism , Signal Transduction , Insulin/metabolism
11.
Nat Aging ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849535

ABSTRACT

The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.

12.
Nat Commun ; 14(1): 6213, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813842

ABSTRACT

Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.


Subject(s)
Epithelial Cells , Stem Cells , Pregnancy , Female , Animals , Epithelial Cells/metabolism , Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Signal Transduction , Mammary Glands, Animal/metabolism
13.
Clin Cancer Res ; 29(18): 3744-3758, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37432984

ABSTRACT

PURPOSE: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFß coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN: ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS: ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS: Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.


Subject(s)
Nerve Sheath Neoplasms , Neurofibrosarcoma , Humans , Biomarkers , Cell Line, Tumor , Endoglin/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Nerve Sheath Neoplasms/drug therapy , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism , Signal Transduction
14.
Genome Biol ; 23(1): 230, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316722

ABSTRACT

BACKGROUND: Overweight and obesity are defined by an anomalous or excessive fat accumulation that may compromise health. To find single-nucleotide polymorphisms (SNPs) influencing metabolic phenotypes associated with the obesity state, we analyze multiple anthropometric and clinical parameters in a cohort of 790 healthy volunteers and study potential associations with 48 manually curated SNPs, in metabolic genes functionally associated with the mechanistic target of rapamycin (mTOR) pathway. RESULTS: We identify and validate rs2291007 within a conserved region in the 3'UTR of folliculin-interacting protein FNIP2 that correlates with multiple leanness parameters. The T-to-C variant represents the major allele in Europeans and disrupts an ancestral target sequence of the miRNA miR-181b-5p, thus resulting in increased FNIP2 mRNA levels in cancer cell lines and in peripheral blood from carriers of the C allele. Because the miRNA binding site is conserved across vertebrates, we engineered the T-to-C substitution in the endogenous Fnip2 allele in mice. Primary cells derived from Fnip2 C/C mice show increased mRNA stability, and more importantly, Fnip2 C/C mice replicate the decreased adiposity and increased leanness observed in human volunteers. Finally, expression levels of FNIP2 in both human samples and mice negatively associate with leanness parameters, and moreover, are the most important contributor in a multifactorial model of body mass index prediction. CONCLUSIONS: We propose that rs2291007 influences human leanness through an evolutionarily conserved modulation of FNIP2 mRNA levels.


Subject(s)
MicroRNAs , Overweight , Humans , Animals , Mice , 3' Untranslated Regions , Overweight/genetics , Thinness/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , RNA, Messenger/metabolism , Obesity/genetics , Carrier Proteins/metabolism
15.
EMBO Mol Med ; 14(3): e14552, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35174975

ABSTRACT

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Blood-Brain Barrier , Brain Neoplasms/drug therapy , Mice , Neoplasm Recurrence, Local , Proteomics
16.
Nat Med ; 28(4): 752-765, 2022 04.
Article in English | MEDLINE | ID: mdl-35411077

ABSTRACT

Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.


Subject(s)
Brain Neoplasms , Melanoma , Brain Neoplasms/secondary , Cranial Irradiation , Humans , Melanoma/radiotherapy
17.
Nat Aging ; 1(3): 269-283, 2021 03.
Article in English | MEDLINE | ID: mdl-37118410

ABSTRACT

Accumulation of short telomeres is a hallmark of aging. Mutations in telomerase or telomere-binding proteins lead to telomere shortening or dysfunction and are at the origin of human pathologies known as 'telomere syndromes', which are characterized by loss of the regenerative capacity of tissues and fibrotic pathologies. Here, we generated two mouse models of kidney fibrosis, either by combining telomerase deficiency to induce telomere shortening and a low dose of folic acid, or by conditionally deleting Trf1, a component of the shelterin telomere protective complex, from the kidneys. We find that short telomeres sensitize the kidneys to develop fibrosis in response to folic acid and exacerbate the epithelial-to-mesenchymal transition (EMT) program. Trf1 deletion in kidneys led to fibrosis and EMT activation. Our findings suggest that telomere shortening or dysfunction may contribute to pathological, age-associated renal fibrosis by influencing the EMT program.


Subject(s)
Telomerase , Mice , Animals , Humans , Telomerase/genetics , Telomere/genetics , Shelterin Complex , Fibrosis , Kidney/metabolism , Folic Acid
18.
PeerJ Comput Sci ; 7: e593, 2021.
Article in English | MEDLINE | ID: mdl-34239974

ABSTRACT

Compi is an application framework to develop end-user, pipeline-based applications with a primary emphasis on: (i) user interface generation, by automatically generating a command-line interface based on the pipeline specific parameter definitions; (ii) application packaging, with compi-dk, which is a version-control-friendly tool to package the pipeline application and its dependencies into a Docker image; and (iii) application distribution provided through a public repository of Compi pipelines, named Compi Hub, which allows users to discover, browse and reuse them easily. By addressing these three aspects, Compi goes beyond traditional workflow engines, having been specially designed for researchers who want to take advantage of common workflow engine features (such as automatic job scheduling or logging, among others) while keeping the simplicity and readability of shell scripts without the need to learn a new programming language. Here we discuss the design of various pipelines developed with Compi to describe its main functionalities, as well as to highlight the similarities and differences with similar tools that are available. An open-source distribution under the Apache 2.0 License is available from GitHub (available at https://github.com/sing-group/compi). Documentation and installers are available from https://www.sing-group.org/compi. A specific repository for Compi pipelines is available from Compi Hub (available at https://www.sing-group.org/compihub.

19.
Cell Rep ; 36(2): 109372, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34260908

ABSTRACT

B lymphocytes are exquisitely sensitive to fluctuations in nutrient signaling by the Rag GTPases, and 15% of follicular lymphomas (FLs) harbor activating mutations in RRAGC. Hence, a potential therapeutic approach against malignant B cells is to inhibit Rag GTPase signaling, but because such inhibitors are still to be developed, efficacy and safety remain unknown. We generated knockin mice expressing a hypomorphic variant of RagC (Q119L); RagCQ119L/+ mice are viable and show attenuated nutrient signaling. B lymphocyte activation is cell-intrinsically impaired in RagCQ119L/+ mice, which also show significant suppression of genetically induced lymphomagenesis and autoimmunity. Surprisingly, no overt systemic trade-offs or phenotypic alterations caused by partial suppression of nutrient signaling are seen in other organs, and RagCQ119L/+ mice show normal longevity and normal age-dependent health decline. These results support the efficacy and safety of moderate inhibition of nutrient signaling against pathological B cells.


Subject(s)
B-Lymphocytes/immunology , Carcinogenesis/immunology , Carcinogenesis/pathology , Lymphoma/immunology , Lymphoma/pathology , Monomeric GTP-Binding Proteins/metabolism , Signal Transduction , Animals , Female , Gene Knock-In Techniques , Heterozygote , Immunity, Humoral , Longevity , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Mutant Strains , Mutation/genetics
20.
Cancers (Basel) ; 13(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205829

ABSTRACT

Metastatic clear-cell renal cell carcinoma (m-ccRCC) is characterized by increased hypoxia-induced factor (HIF)-2α and vascular endothelial growth factor receptor (VEGFR)-dependent angiogenesis through loss of function of the von Hippel-Lindau protein. VEGFR tyrosine kinase inhibitors (VEGFR-TKIs) are a cornerstone of m-ccRCC treatment, and new treatments targeting HIF-2α are currently under investigation. However, predictive biomarkers for these treatments are lacking. In this retrospective cohort study including 109 patients treated with VEGFR-targeted therapies as first-line treatment, we aimed to study the possible predictive function of microRNAs (miRNAs) targeting HIF-2α, VEGFR1 and VEGFR2. We selected miRNAs inversely correlated with HIF-2α, VEGFR1 and/or VEGFR2 expression and with predicted target sites in the respective genes and subsequently studied their impact on therapeutic outcomes. We identified four miRNAs (miR-34c-5p, miR-221-3p, miR-222-3p and miR-3529-3p) inversely correlated with VEGFR1 and/or VEGFR2 expression and associated with tumor shrinkage and progression-free survival (PFS) upon treatment with VEGFR-TKIs, highlighting the potential predictive value of these miRNAs. Moreover, we identified three miRNAs (miR-185-5p, miR-223-3p and miR-3529-3p) inversely correlated with HIF-2α expression and associated with tumor shrinkage and PFS upon treatment with VEGFR-TKIs. These three miRNAs can have a predictive value not only upon treatment with VEGFR-TKIs but possibly also upon treatment with the upcoming HIF-2α inhibitor belzutifan.

SELECTION OF CITATIONS
SEARCH DETAIL