Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
Add more filters

Publication year range
1.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34015271

ABSTRACT

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Expression Profiling , Humans , Immunoglobulin A/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Protein Domains/immunology , Protein Multimerization , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
Cell ; 182(6): 1606-1622.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32888429

ABSTRACT

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.


Subject(s)
Enteric Nervous System/cytology , Enteric Nervous System/metabolism , Gene Expression Regulation, Developmental/genetics , Neurons/metabolism , Nissl Bodies/metabolism , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Aging/genetics , Aging/metabolism , Animals , Circadian Clocks/genetics , Colon/cytology , Colon/metabolism , Endoplasmic Reticulum, Rough/genetics , Endoplasmic Reticulum, Rough/metabolism , Endoplasmic Reticulum, Rough/ultrastructure , Epithelial Cells/metabolism , Female , Genetic Predisposition to Disease/genetics , Humans , Ileum/cytology , Ileum/metabolism , Inflammation/genetics , Inflammation/metabolism , Intestinal Diseases/genetics , Intestinal Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Nervous System Diseases/genetics , Nervous System Diseases/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neurons/cytology , Nissl Bodies/genetics , Nissl Bodies/ultrastructure , RNA, Messenger/genetics , RNA-Seq , Ribosomes/metabolism , Ribosomes/ultrastructure , Stromal Cells/metabolism
3.
Nat Immunol ; 23(7): 1063-1075, 2022 07.
Article in English | MEDLINE | ID: mdl-35668320

ABSTRACT

Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.


Subject(s)
Colitis , Receptors, G-Protein-Coupled , Animals , Colitis/metabolism , Hydrogen-Ion Concentration , Inflammation/metabolism , Lysosomes/metabolism , Mice , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Th17 Cells/metabolism
4.
Cell ; 178(5): 1041-1056, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442399

ABSTRACT

The current understanding of inflammatory bowel disease (IBD) pathogenesis implicates a complex interaction between host genetics, host immunity, microbiome, and environmental exposures. Mechanisms gleaned from genetics and molecular pathogenesis offer clues to the critical triggers of mucosal inflammation and guide the development of therapeutic interventions. A complex network of interactions between host genetic factors, microbes, and microbial metabolites governs intestinal homeostasis, making classification and mechanistic dissection of involved pathways challenging. In this Review, we discuss these challenges, areas of active translation, and opportunities for development of next-generation therapies.


Subject(s)
Inflammatory Bowel Diseases/pathology , Microbiota , Adaptive Immunity , Animals , Bacteria/genetics , Bacteria/metabolism , Biological Products/pharmacology , Cytokines/genetics , Cytokines/metabolism , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Microbiota/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
Cell ; 178(3): 714-730.e22, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31348891

ABSTRACT

Genome-wide association studies (GWAS) have revealed risk alleles for ulcerative colitis (UC). To understand their cell type specificities and pathways of action, we generate an atlas of 366,650 cells from the colon mucosa of 18 UC patients and 12 healthy individuals, revealing 51 epithelial, stromal, and immune cell subsets, including BEST4+ enterocytes, microfold-like cells, and IL13RA2+IL11+ inflammatory fibroblasts, which we associate with resistance to anti-TNF treatment. Inflammatory fibroblasts, inflammatory monocytes, microfold-like cells, and T cells that co-express CD8 and IL-17 expand with disease, forming intercellular interaction hubs. Many UC risk genes are cell type specific and co-regulated within relatively few gene modules, suggesting convergence onto limited sets of cell types and pathways. Using this observation, we nominate and infer functions for specific risk genes across GWAS loci. Our work provides a framework for interrogating complex human diseases and mapping risk variants to cell types and pathways.


Subject(s)
Colitis, Ulcerative/pathology , Colon/metabolism , Adult , Aged , Antibodies, Monoclonal/therapeutic use , Bestrophins/metabolism , CD8 Antigens/metabolism , Case-Control Studies , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon/pathology , Enterocytes/cytology , Enterocytes/metabolism , Female , Genetic Loci , Genome-Wide Association Study , Humans , Interleukin-17/metabolism , Male , Middle Aged , Risk Factors , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thrombospondins/metabolism , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Young Adult
6.
Cell ; 175(5): 1307-1320.e22, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30392957

ABSTRACT

In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.


Subject(s)
Cell Differentiation , Cell Self Renewal , Interleukin-10/metabolism , Stem Cells/cytology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , Cell Differentiation/drug effects , Cell Self Renewal/drug effects , Cytokines/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Histocompatibility Antigens Class II/metabolism , Immune System/metabolism , Intestines/cytology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Receptors, G-Protein-Coupled/metabolism , Salmonella enterica/pathogenicity , Stem Cells/metabolism , T-Lymphocytes, Helper-Inducer/cytology
7.
Immunity ; 56(2): 444-458.e5, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36720220

ABSTRACT

Crohn's disease (CD) is a chronic gastrointestinal disease that is increasing in prevalence worldwide. CD is multifactorial, involving the complex interplay of genetic, immune, and environmental factors, necessitating a system-level understanding of its etiology. To characterize cell-type-specific transcriptional heterogeneity in active CD, we profiled 720,633 cells from the terminal ileum and colon of 71 donors with varying inflammation status. Our integrated datasets revealed organ- and compartment-specific responses to acute and chronic inflammation; most immune changes were in cell composition, whereas transcriptional changes dominated among epithelial and stromal cells. These changes correlated with endoscopic inflammation, but small and large intestines exhibited distinct responses, which were particularly apparent when focusing on IBD risk genes. Finally, we mapped markers of disease-associated myofibroblast activation and identified CHMP1A, TBX3, and RNF168 as regulators of fibrotic complications. Altogether, our results provide a roadmap for understanding cell-type- and organ-specific differences in CD and potential directions for therapeutic development.


Subject(s)
Crohn Disease , Humans , Transcriptome , Colon , Ileum , Inflammation/genetics , Ubiquitin-Protein Ligases/genetics
8.
Immunity ; 56(7): 1681-1698.e13, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37301199

ABSTRACT

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Subject(s)
COVID-19 , Deep Learning , Humans , Captan , SARS-CoV-2 , HLA Antigens , Epitopes, T-Lymphocyte , Peptides
9.
Immunity ; 55(10): 1909-1923.e6, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36115338

ABSTRACT

Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.


Subject(s)
Crohn Disease , Immunodominant Epitopes , CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Interleukin-10 , Interleukin-17
10.
Cell ; 163(6): 1388-99, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26627736

ABSTRACT

Gene essentiality is typically determined by assessing the viability of the corresponding mutant cells, but this definition fails to account for the ability of cells to adaptively evolve to genetic perturbations. Here, we performed a stringent screen to assess the degree to which Saccharomyces cerevisiae cells can survive the deletion of ~1,000 individual "essential" genes and found that ~9% of these genetic perturbations could in fact be overcome by adaptive evolution. Our analyses uncovered a genome-wide gradient of gene essentiality, with certain essential cellular functions being more "evolvable" than others. Ploidy changes were prevalent among the evolved mutant strains, and aneuploidy of a specific chromosome was adaptive for a class of evolvable nucleoporin mutants. These data justify a quantitative redefinition of gene essentiality that incorporates both viability and evolvability of the corresponding mutant cells and will enable selection of therapeutic targets associated with lower risk of emergence of drug resistance.


Subject(s)
Biological Evolution , Genes, Essential , Saccharomyces cerevisiae/genetics , Gene Deletion , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spores, Fungal/metabolism
11.
Cell ; 159(2): 440-55, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25263330

ABSTRACT

CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.


Subject(s)
Adenocarcinoma/genetics , Disease Models, Animal , Genes, Tumor Suppressor , Genetic Engineering/methods , Lung Neoplasms/genetics , Oncogenes , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Dendritic Cells/metabolism , Gene Knock-In Techniques , Genetic Vectors , Lentivirus , Mice , Mice, Transgenic
12.
Immunity ; 51(4): 696-708.e9, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31618654

ABSTRACT

Signaling abnormalities in immune responses in the small intestine can trigger chronic type 2 inflammation involving interaction of multiple immune cell types. To systematically characterize this response, we analyzed 58,067 immune cells from the mouse small intestine by single-cell RNA sequencing (scRNA-seq) at steady state and after induction of a type 2 inflammatory reaction to ovalbumin (OVA). Computational analysis revealed broad shifts in both cell-type composition and cell programs in response to the inflammation, especially in group 2 innate lymphoid cells (ILC2s). Inflammation induced the expression of exon 5 of Calca, which encodes the alpha-calcitonin gene-related peptide (α-CGRP), in intestinal KLRG1+ ILC2s. α-CGRP antagonized KLRG1+ ILC2s proliferation but promoted IL-5 expression. Genetic perturbation of α-CGRP increased the proportion of intestinal KLRG1+ ILC2s. Our work highlights a model where α-CGRP-mediated neuronal signaling is critical for suppressing ILC2 expansion and maintaining homeostasis of the type 2 immune machinery.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Inflammation/immunology , Intestines/immunology , Lymphocytes/immunology , Neuropeptides/metabolism , Animals , Calcitonin Gene-Related Peptide/genetics , Cells, Cultured , Computational Biology , Immunity, Innate , Interleukin-5/genetics , Interleukin-5/metabolism , Lectins, C-Type/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Neuropeptides/genetics , Receptors, Immunologic/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Th2 Cells/immunology , Transcriptome , Up-Regulation
13.
Nature ; 608(7921): 168-173, 2022 08.
Article in English | MEDLINE | ID: mdl-35896748

ABSTRACT

Multiple studies have established associations between human gut bacteria and host physiology, but determining the molecular mechanisms underlying these associations has been challenging1-3. Akkermansia muciniphila has been robustly associated with positive systemic effects on host metabolism, favourable outcomes to checkpoint blockade in cancer immunotherapy and homeostatic immunity4-7. Here we report the identification of a lipid from A. muciniphila's cell membrane that recapitulates the immunomodulatory activity of A. muciniphila in cell-based assays8. The isolated immunogen, a diacyl phosphatidylethanolamine with two branched chains (a15:0-i15:0 PE), was characterized through both spectroscopic analysis and chemical synthesis. The immunogenic activity of a15:0-i15:0 PE has a highly restricted structure-activity relationship, and its immune signalling requires an unexpected toll-like receptor TLR2-TLR1 heterodimer9,10. Certain features of the phospholipid's activity are worth noting: it is significantly less potent than known natural and synthetic TLR2 agonists; it preferentially induces some inflammatory cytokines but not others; and, at low doses (1% of EC50) it resets activation thresholds and responses for immune signalling. Identifying both the molecule and an equipotent synthetic analogue, its non-canonical TLR2-TLR1 signalling pathway, its immunomodulatory selectivity and its low-dose immunoregulatory effects provide a molecular mechanism for a model of A. muciniphila's ability to set immunological tone and its varied roles in health and disease.


Subject(s)
Akkermansia , Homeostasis , Immunity , Phosphatidylethanolamines , Akkermansia/chemistry , Akkermansia/cytology , Akkermansia/immunology , Cell Membrane/chemistry , Cell Membrane/immunology , Cytokines/immunology , Homeostasis/immunology , Humans , Inflammation Mediators/chemical synthesis , Inflammation Mediators/chemistry , Inflammation Mediators/immunology , Phosphatidylethanolamines/chemical synthesis , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/immunology , Structure-Activity Relationship , Toll-Like Receptor 1/immunology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/immunology
14.
Am J Hum Genet ; 111(6): 1047-1060, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38776927

ABSTRACT

Lichen planus (LP) is a T-cell-mediated inflammatory disease affecting squamous epithelia in many parts of the body, most often the skin and oral mucosa. Cutaneous LP is usually transient and oral LP (OLP) is most often chronic, so we performed a large-scale genetic and epidemiological study of LP to address whether the oral and non-oral subgroups have shared or distinct underlying pathologies and their overlap with autoimmune disease. Using lifelong records covering diagnoses, procedures, and clinic identity from 473,580 individuals in the FinnGen study, genome-wide association analyses were conducted on carefully constructed subcategories of OLP (n = 3,323) and non-oral LP (n = 4,356) and on the combined group. We identified 15 genome-wide significant associations in FinnGen and an additional 12 when meta-analyzed with UKBB (27 independent associations at 25 distinct genomic locations), most of which are shared between oral and non-oral LP. Many associations coincide with known autoimmune disease loci, consistent with the epidemiologic enrichment of LP with hypothyroidism and other autoimmune diseases. Notably, a third of the FinnGen associations demonstrate significant differences between OLP and non-OLP. We also observed a 13.6-fold risk for tongue cancer and an elevated risk for other oral cancers in OLP, in agreement with earlier reports that connect LP with higher cancer incidence. In addition to a large-scale dissection of LP genetics and comorbidities, our study demonstrates the use of comprehensive, multidimensional health registry data to address outstanding clinical questions and reveal underlying biological mechanisms in common but understudied diseases.


Subject(s)
Autoimmune Diseases , Genome-Wide Association Study , Lichen Planus, Oral , Mouth Neoplasms , Humans , Autoimmune Diseases/genetics , Lichen Planus, Oral/genetics , Lichen Planus, Oral/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Female , Male , Genetic Heterogeneity , Middle Aged , Lichen Planus/genetics , Lichen Planus/pathology , Genetic Predisposition to Disease , Aged , Adult , Risk Factors , Polymorphism, Single Nucleotide
16.
Proc Natl Acad Sci U S A ; 121(1): e2307086120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147543

ABSTRACT

The salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site. This effort resulted in SIK1/2-selective probes that inhibit key intracellular proximal signaling events including reducing phosphorylation of the SIK substrate cAMP response element binding protein (CREB) regulated transcription coactivator 3 (CRTC3) as detected with an internally generated phospho-Ser329-CRTC3-specific antibody. These inhibitors also suppress production of pro-inflammatory cytokines while inducing anti-inflammatory interleukin-10 in activated human and murine myeloid cells and in mice following a lipopolysaccharide challenge. Oral dosing of these compounds ameliorates disease in a murine colitis model. These findings define an approach to generate highly selective SIK1/2 inhibitors and establish that targeting these isoforms may be a useful strategy to suppress pathological inflammation.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Protein Serine-Threonine Kinases , Mice , Humans , Animals , Protein Serine-Threonine Kinases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cytokines , Inflammation/drug therapy , Protein Isoforms , Anti-Inflammatory Agents/pharmacology , Immunity, Innate , Transcription Factors
17.
Trends Immunol ; 44(7): 499-511, 2023 07.
Article in English | MEDLINE | ID: mdl-37236891

ABSTRACT

The human intestinal microbiome has coevolved with its host to establish a stable homeostatic relationship with hallmark features of mutualistic symbioses, yet the mechanistic underpinnings of host-microbiome interactions are incompletely understood. Thus, it is an opportune time to conceive a common framework for microbiome-mediated regulation of immune function. We propose the term conditioned immunity to describe the multifaceted mechanisms by which the microbiome modulates immunity. In this regard, microbial colonization is a conditioning exposure that has durable effects on immune function through the action of secondary metabolites, foreign molecular patterns, and antigens. Here, we discuss how spatial niches impact host exposure to microbial products at the level of dose and timing, which elicit diverse conditioned responses.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Intestines , Immune System , Symbiosis
18.
Nature ; 578(7796): 527-539, 2020 02.
Article in English | MEDLINE | ID: mdl-32103191

ABSTRACT

Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.


Subject(s)
Inflammatory Bowel Diseases/genetics , Animals , Cytokines/immunology , Exome/genetics , Fibrosis/immunology , Fibrosis/pathology , Genetic Predisposition to Disease , Homeostasis , Humans , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Immunity, Mucosal/genetics , Immunity, Mucosal/immunology , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/therapy , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Single-Cell Analysis
19.
PLoS Biol ; 20(1): e3001532, 2022 01.
Article in English | MEDLINE | ID: mdl-35085231

ABSTRACT

Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.


Subject(s)
ADAM Proteins/immunology , Colitis/immunology , Extracellular Matrix/metabolism , Fibroblasts/immunology , Intestinal Mucosa/immunology , Mesenchymal Stem Cells/immunology , ADAM Proteins/deficiency , ADAM Proteins/genetics , Animals , Cell Differentiation , Colitis/chemically induced , Colitis/genetics , Colitis/pathology , Colon/immunology , Colon/pathology , Extracellular Matrix/immunology , Fibroblasts/pathology , Fibrosis , Gene Expression Regulation , Humans , Inflammation , Interleukin-11/genetics , Interleukin-11/immunology , Intestinal Mucosa/pathology , Male , Mesenchymal Stem Cells/pathology , Mice , Mice, Inbred C57BL , Sequence Analysis, RNA , Single-Cell Analysis , Sodium Dodecyl Sulfate/administration & dosage , Transcription, Genetic , Transcriptome , Wound Healing/genetics , Wound Healing/immunology
20.
Mod Pathol ; 37(4): 100454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417627

ABSTRACT

Atypical spindle cell/pleomorphic lipomatous tumor (ASPLT) is a recently described adipocytic tumor predominantly affecting the subcutaneous soft tissues of adults. Previous studies have shown that ASPLT follows a benign clinical course with a 4% to 12% local recurrence rate and no risk of dedifferentiation. Herein, we describe the clinicopathologic and molecular findings of 4 cases of ASPLT showing unequivocal sarcomatous transformation. Three patients were male and one was female, aged 65, 70, 74, and 78 years. Two cases presented as mass-forming lesions, while 1 case was incidentally discovered. The tumors measured 30, 55, 80, and 110 mm and occurred in the chest wall (n = 2) or arm (n = 2); all were subcutaneous. Microscopically, they showed a biphasic appearance comprising a low-grade ASPLT component and a high-grade sarcomatous component. The low-grade components showed features in the spectrum of either atypical pleomorphic lipomatous tumor (n = 2) or atypical spindle cell lipomatous tumor (n = 2). The high-grade components displayed leiomyosarcoma-like (n = 2), pleomorphic liposarcoma-like (n = 1) or undifferentiated sarcoma-like (n = 1) morphology. On immunohistochemistry, tumors were negative for MDM2 and showed loss of RB1 expression. In addition, the leiomyosarcoma-like areas seen in 2 cases were positive for smooth muscle actin and H-caldesmon. Single-nucleotide polymorphism array, performed in 3 cases, showed deletions of TP53, RB1, and flanking genes in both components. In contrast, the sarcomatous components showed more complex genomic profiles with rare segmental gains and recurrent loss of PTEN (n = 3), ATM (n = 2), and CDKN2A/B (n = 2) among other genes. Whole exome sequencing identified a TP53 variant in one case and an ATRX variant in another, each occurring in both tumor components. Limited clinical follow-up showed no recurrence or metastasis after 1 to 13 months (median, 7.5 months) postsurgical excision. Altogether, our data support that ASPLT can rarely develop sarcomatous transformation and offer insights into the molecular mechanisms underlying this event.


Subject(s)
Leiomyosarcoma , Lipoma , Liposarcoma , Sarcoma , Soft Tissue Neoplasms , Adult , Humans , Male , Female , Biomarkers, Tumor/analysis , Liposarcoma/genetics , Liposarcoma/pathology , Sarcoma/genetics , Lipoma/pathology , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL