Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Opt Express ; 26(19): 24904-24916, 2018 Sep 17.
Article in English | MEDLINE | ID: mdl-30469599

ABSTRACT

Conventional thermal imaging cameras, based on focal-plane array (FPA) sensors, exhibit inherent problems: such as stray radiation, cross-talk and the calibration uncertainty of ensuring each pixel behaves as if it were an identical temperature sensor. Radiation thermometers can largely overcome these issues, comprising of only a single detector element that can be optimised and calibrated. Although the latter approach can provide excellent accuracy for single-point temperature measurement, it does not provide a temperature image of the target object. In this work, we present a micromechanical systems (MEMS) mirror and silicon (Si) avalanche photodiode (APD) based single-pixel camera, capable of producing quantitative thermal images at an operating wavelength of 1 µm. This work utilises a custom designed f-theta wide-angle lens and MEMS mirror, to scan +/- 30° in both x- and y-dimensions, without signal loss due to vignetting at any point in the field of view (FOV). Our single-pixel camera is shown to perform well, with 3 °C size-of-source effect (SSE) related temperature error and can measure below 700 °C whilst achieving ± 0.5 °C noise related measurement uncertainty. Our measurements were calibrated and traceable to the International Temperature Scale of 1990 (ITS-90). The combination of low SSE and absence of vignetting enables quantitative temperature measurements over a spatial field with measurement uncertainty at levels lower than would be possible with FPA based thermal imaging cameras.

2.
Opt Express ; 26(3): 3188-3198, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401850

ABSTRACT

Accurate quantitative temperature measurements are difficult to achieve using focal-plane array sensors. This is due to reflections inside the instrument and the difficulty of calibrating a matrix of pixels as identical radiation thermometers. Size-of-source effect (SSE), which is the dependence of an infrared temperature measurement on the area surrounding the target area, is a major contributor to this problem and cannot be reduced using glare stops. Measurements are affected by power received from outside the field-of-view (FOV), leading to increased measurement uncertainty. In this work, we present a micromechanical systems (MEMS) mirror based scanning thermal imaging camera with reduced measurement uncertainty compared to focal-plane array based systems. We demonstrate our flexible imaging approach using a Si avalanche photodiode (APD), which utilises high internal gain to enable the measurement of lower target temperatures with an effective wavelength of 1 µm and compare results with a Si photodiode. We compare measurements from our APD thermal imaging instrument against a commercial bolometer based focal-plane array camera. Our scanning approach results in a reduction in SSE related temperature error by 66 °C for the measurement of a spatially uniform 800 °C target when the target aperture diameter is increased from 10 to 20 mm. We also find that our APD instrument is capable of measuring target temperatures below 700 °C, over these near infrared wavelengths, with D* related measurement uncertainty of ± 0.5 °C.

3.
Appl Opt ; 57(36): 10449-10457, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30645388

ABSTRACT

We present a wide field of view (FOV) infrared scanning system, designed for single-pixel near-infrared thermal imaging. The scanning system consisted of a two-axis micro-electromechanical system (MEMS) mirror that was incorporated within the lens. The optical system consisted of two groups of lenses and a silicon avalanche photodiode. The system was designed for both the production of thermal images and also to utilize the techniques of radiation thermometry to measure the absolute temperature of targets from 500°C to 1100°C. Our system has the potential for real-time image acquisition, with improved data acquisition electronics. The FOV of our scanning system was ±30° when fully utilizing the MEMS mirror's scanning angle of ±5°. The pixel FOV (calculated from the distance to target size ratio) was 100:1. The image quality was analyzed, including the modulation transfer function, spot diagrams, ray fan plots, lateral chromatic aberrations, distortion, relative illumination, and size-of-source effect. The instrument was fabricated in our laboratory, and one of the thermal images, which was taken with the new lens, is presented as an example of the instrument optical performance.

SELECTION OF CITATIONS
SEARCH DETAIL